Pin display device

Information

  • Patent Grant
  • 6625088
  • Patent Number
    6,625,088
  • Date Filed
    Friday, July 26, 2002
    21 years ago
  • Date Issued
    Tuesday, September 23, 2003
    20 years ago
Abstract
A pin display first embodiment utilizes a cammed two differently dimensioned cam to press a pin support forward to make it even or clear it, followed by a flattened portion to enable a pin support to move back into gentle contact with a belt having raised numerals which generally advance based upon a continuously driven motor. A third position on the cam brings the pin support forward to a third, rest position away from the belt and at which the mechanism rests, typically for one minute. The subject matter can be time, temperature, barometric pressure, or for symbols and pictures for a story telling application. The device can be configured to display any dimensional image and can present a sequence of images. A pin display of a second embodiment of the invention utilizes push-pull solenoids to control pre-specified segmented areas of pins to an outward or inward position.
Description




FIELD OF THE INVENTION




The present invention relates to improvements in the technology relating to inexpensive, novel and reliable clocks and the like for operating a display in a novel pin push format.




BACKGROUND OF THE INVENTION




Chronometers are well known. Pin matrix art devices have been both toy and art for decades, used by children to capture and “digitize” in terms of the position of a limited number of pin heads, an object over which the pins were placed to operate by gravity, falling onto the bottom design shape. The very thing which makes the pin art boxes so much fun, that of utilizing nothing more than the gravity of the pin operating against a surface configuration, also makes it somewhat limiting in that the device must generally be able to be inverted in order to be reset and to be re-oriented to allow the pins to fall.




What is needed is a device which can combine the captivating two dimensional “digitized” effects of pin art and utilize it to operate a clock to show time in the pin art format.




SUMMARY OF THE INVENTION




The pin display mechanism can be utilized as a display clock or any other type of display, such as temperature, barometric pressure, or non alpha numeric displays. A first embodiment of the present invention utilizes a cammed two differently dimensioned cam to press a pin support forward to make it even or clear it, followed by a flattened portion to enable a pin support to move back into gentle contact with a belt having raised numerals which generally advance based upon a continuously driven motor. A third position on the cam brings the pin support forward to a third, rest position away from the belt and at which the mechanism rests, typically for one minute.




Although time could be recorded to seconds, the cycle time for the mechanism to erase, move back to the belt to pick up the new image and then move to a display position could be as little as a second, and is not expected to be accomplished at the time level of seconds. In addition, since each change is accompanied by mechanically controlled movement of the pin holder, or pin matrix, continuous motion is not necessarily desired.




A clock (mounted or free standing)as the image mechanism can be split into one or many independent belts, chains, links, drums, or wheels and more, leading to multiple images being presented at different times. In the clock application showing hours and minutes, it is preferable to utilize four belts with 0-9 digits turns via a clock mechanism. The clock mechanism is preferably a slow moving belt mechanism using rpm step-down or other suitable timing mechanism which may enables a direct drive motor to be employed to move a belt having physically raised numbers forming a volumetric protrusion in the direction of the pin matrix. The time is displayed via the numbers, the pin matrix moves in to the image to present the time as a contour of pins to the outside of the mechanism. It is also possible to move the pin mechanism in and out at different speeds to create a pulsing of image display. The chronometer device can take any external form, can be controlled electronically or mechanically.




The invention also has a story telling application. The device can be configured to display any dimensional image and can present a sequence of images. This could be applied to telling stories or displaying any sequence of images that the user might like to have displayed. The device could be configured to allow the user to insert any 3 dimensional object leading to that object being displayed as a contour map. Further, the device could be configured to display temperature, and become a weather station indicator. In another configuration, a series of electromagnetic actuators can be used to-drive the pins forward and back to create a physical display image.




The pin display clock of a second embodiment of the invention utilizes push-pull solenoids to control pre-specified segmented areas of pins to an outward or inward position. The segmented areas of the pins combine to form numbers in a similar way in which light pixels are combined to indicate numbers.




The pins can be of any size, but the utilization of the segmented areas enables each numeric representation to be actuated with only seven push-pull solenoids. Depending upon the size of the pins and push-pull solenoids, each pin could be actuated to form more complex pictures. The use of segmented areas and common or simultaneous pin contact enables a reduction in the number of actuators. The use of solenoids enables the time to be instantly changed or changed in sequence, solenoid by solenoid, for a more entertaining display. Preferably the solenoids are latched solenoids which work like a pen mechanism. One actuation pushes the pins forward and a second actuation causes the pins to spring back.




A second embodiment features a display device which is shown as a display chronometer for illustration purposes only. The second embodiment also has a flat clear display in front of a decorative pin hole array supported by four tubular standoffs. An array of apertures enable the decorative pin hole array to present a series of pins extending through the decorative pin hole array including a series of fixed pins as well as a series of actuatable pins which are actuatable in groups to form a numeric (or other) display.




A fixed pin plate includes a series of either holes or whole missing sections to enable a series of pin support segments to be expressed through the holes or whole missing sections based upon a mechanical connection to a series of solenoids. Solenoids are arranged into a cluster to support a pattern capable of being selectively actuated to express a symbol.




The cluster of solenoids are supported by a circuit board and each have an actuator supporting a plate. Each plate supports a grouping of actuatable pins. The expression of the actuatable pins can be had by either pulling them to a position behind the maximum forward extent of the series of fixed pins, or by pushing them to a forward extent beyond the maximum forward extent of the series of fixed pins.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention, its configuration, construction, and operation will be best further described in the following detailed description, taken in conjunction with the accompanying drawings in which:





FIG. 1

is a perspective view of the chronometer of the present invention;





FIG. 2

is a schematic view of a portion of the pins and cam member seen in

FIG. 1

illustrating a far push cam action which clears any image of the pin heads by compression against a front flat display;





FIG. 3

is a flat cam position which allows the pin matrix to travel with the pins back to the physical shape to be picked up;





FIG. 4

is a return to normal display position;





FIG. 5

is a front view of the chronometer seen in

FIGS. 1-4

;





FIG. 6

is a side view of the chronometer seen in

FIGS. 1-5

;





FIG. 7

is a perspective view of one realization of a further embodiment seen as a pin chronometer powered by solenoids;





FIG. 8

is a side perspective view of a single cluster of solenoids seen in FIG.


7


and two examples positions achievable by pin support segments;





FIG. 9

is an isolated perspective view of a single solenoid and connector plate supporting an actuatable group of pins;





FIG. 10

is a perspective view of two clusters of solenoids operating through a fixed pin array structure to express the number “22” by forward movement of actuatable pins; and





FIG. 11

is a perspective view of two clusters of solenoids operating through a fixed pin array structure to express the number “88” by rearward movement of actuatable pins.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The description and operation of the invention will be best initiated with reference to

FIG. 1

, beginning at the left. A display chronometer


11


has a front flat clear display


13


supported a generally fixed distance away from a pin hole array


15


. A series of four tubular standoffs


17


fix the distance between the pin matrix or pin support


15


and the flat clear display


13


. Between the pin support


15


and the flat clear display


13


, a pin matrix support


19


is mounted to slide along the tubular standoffs


17


by use of a series of four bores or apertures


21


. The pin matrix support


19


is biased in a direction toward the pin hole array


15


by the use of four springs


23


which urge against the display


13


and in the direction of the pin hole array


15


.




Pin hole array


15


has a pair of spaced apart cam slots


27


and


29


through which cam members


31


and


33


can actuate against the actuated the pin matrix support


17


evenly to perform the resetting action. The pin hole array


15


is connected to a base


35


. Base


35


may be attached to a side wall support


37


an opposite side wall is removed for clarity. Side wall


37


supports a series of roller drum supports


39


, typically on a series of axles


41


which may extend from the side wall support


37


. Rather than rollers drum supports


39


, the lower rear location is occupied by a series of sprockets


43


. Sprockets


43


are engaged by a shaft


45


which is driven by a motor


47


. Sprockets


43


and rollers drum supports


39


support a series of belts


49


which support a series or protruding numbers


51


. The sprockets


43


may include reduction gears in order that certain of the belts


49


turn more slowly than others to register the time in minutes and hours. The belts


49


indicating the hour may be combined as a single belt for a twelve hour indication or may operate separately for a twenty four hour operation.




Motor


47


may have a connection to either an alternating current source or to a battery or solar power source. A switch set


55


may be used to control the cams


31


and


33


or other controls as are necessary. For example, where a user wants a time change only every five minutes, the cams


31


and


33


could be set to operate only once every five minutes. Even though the belts


49


continue to turn, their image would be captured only every five minutes, for example. The timing of the image capture could be performed in accord with the alignment of the protruding numbers


51


. Also seen is a covering box


57


which may provide viewing for the pin array.




The pin matrix support


19


may be somewhat wider than pin hole array


15


in order that forward movement of the pin matrix support


19


may bring a series of pins


61


, having heads


63


, forward once pin matrix support


19


is moved away from the pin hole array


15


after an impression of the protruding numbers


51


is had. This could also be accomplished by selection of materials, selecting the pin matrix support


19


with either a more frictional material or smaller sized holes to provide some interference, or conversely selecting the pin hole array


15


to have a virtually frictionless material. In any event, it is the pin matrix support


19


which should dominate as far as friction is concerned. Further, once the pins


61


are loaded into place, the pins


61


will remain vertical due to their being supported in at least two places. Pins


61


having a friction coating in the vicinity of the pin matrix support


19


will assist in allowing the pin matrix support


19


to dominate in the frictional engagement of the pins


61


.




Also seen are apertures


65


in the flat clear display


13


to enable threaded members


67


to engage the threaded interiors of the four tubular standoffs


17


.





FIG. 2

is a schematic view of a portion of the pins


61


and cam member


31


. The view is not taken with respect to any particular orientation, but simply shows the pin hole array


15


supported by side wall support


37


, a single tubular standoff


17


for reference, a pin matrix support


19


, flat clear display


13


and spring


23


shown in

FIG. 2

in an extremely compressed state. To the right are seen a series of pins


61


with their respective heads


63


captured between the pin matrix support


19


and the flat clear display


13


. The cam member


31


is seen to be a combination of an oblong cam


71


and a more than half cam


73


mounted on a common cam shaft


75


.




The oblong cam


71


has a greater radial length and a shorter number of radial degrees of travel and is made to perform a maximum push against the pin matrix support


19


, and this is shown in FIG.


2


. The ends of the oblong cam


71


are rounded. The half cam


73


has a flat portion


77


and a radiused portion


79


. Where a continuous drive motor is used, the travel along the periphery of the radiused portion


79


will represent a state where the chronometer


11


is in a quiescent state illustrating the time, and this will be illustrated in FIG.


4


. The radiused portion


79


can be made to have a non-constant main extent in order to cause the expressed symbol to fade. Thus, the length of the half cam


73


could be gradually increased to match the outer extent of the oblong long cam


71


which would cause the erasure of the expression of the symbols to occur over a long period to cause the expressed symbol to, in effect, fade. Where a symbol or protruding number


51


was available for a long amount of time in a non moving state, the expression of the protruding number or symbol


51


could also be made to express slowly over time. The bearing by the flat portion


77


, which coincidentally coincides with the flat side of the oblong cam


71


, provides a very brief time for enabling maximum travel of the pin matrix support


19


away from display


13


, and this will be shown in FIG.


3


. Schematically represented in

FIG. 2

is the belt


49


with its protruding symbol or number


51


. This is the three dimensional object having a displacement image which the pins


61


will pick up through differential axial displacement when brought back towards the belt


49


. Again, in

FIG. 2

, the maximum extent of bearing by the oblong cap


71


against the pin matrix support


19


is shown and in which each of the pins


61


are forced by the flat clear display


13


to be loaded to a maximum rear extent within the pin matrix support


19


. This maximum extent occurs only briefly.




Referring to

FIG. 3

, the maximum rearward travel of the pin matrix support


19


with the pins sliding as in a manner as frictionless as possible through the pin hole array


15


enables certain of the pins


63


to engage the protruding numbers


51


to thus be pushed outwardly forward of the pin matrix support


19


to transmit the image of the protruding number


51


contacted by the end of the pins


61


for display through the flat clear display


13


which may be a plexiglass window, or even a glass window for superior resistance to any abrasion from the pin heads


63


. In this position the spring


23


is fully extended, the pin matrix support


19


is brought adjacent or at least closer to the pin hole array


15


, and certain of the pin heads


63


are seen as protruding due to the engagement of the pin tips with the protruding numbers


51


.




The position shown in

FIG. 4

is the position which the chronometer


11


occupies most of the time, typically about fifty five seconds each minute, and in which position the time is visible as seen recorded by differential displacement of the pins


61


. After the cycle of

FIG. 4

, the cycle is repeated in accord with that shown in

FIG. 2

, then FIG.


3


and back to

FIG. 4

again.




Referring to

FIG. 5

, a frontal schematic view of the chronometer


11


is shown in less detail, but indicating the positioning of the cam members


31


and


33


, the belts


49


, a pin head area


81


and illustrating the expression of one symbol, the number “8” through the pin head area


81


.




Referring to

FIG. 6

a side view of the chronometer seen in

FIGS. 1-5

shows the orientation of the belts


49


, cam member


31


and


33


, roller drum supports


39


, sprocket


43


, all encased within covering box


57


.




Referring to

FIG. 7

, a second embodiment of a pin display is seen as a display chronometer


101


. A flat clear display


103


is located in front of and spaced apart from a decorative pin hole array


105


using four tubular standoffs


107


. The clear display


103


is held in by threaded members


109


. Pin hole array


105


includes an array of apertures


111


.




Behind the decorative pin hole array


105


is a fixed pin array structure


115


including a bracket


117


having a forward main plate


119


having an array of fixed pins


121


. At the middle portion of the main plate


119


, a segment in the shape of multiple numbers of “8” are seen with either holes


125


or whole missing sections


127


.




In general, the nature of the holes


125


or whole missing sections


127


will not be observable through the flat clear display


103


because the holes


111


of the decorative pin hole array


105


visually obscure anything behind the decorative pin hole array


105


. The pins


121


shown at the front of the fixed pin structure


115


are shown to a limited extent so-that the nature of either the holes


125


or missing sections


127


can be seen. Missing sections


127


leave two rectangular sections of forwardly projecting pins


129


. Other pins will be brought from behind the fixed pin array structure


115


to enable a complete and even array of pins to project forward of the fixed pin array structure


115


.




The pins which will project from behind either the holes


125


or missing sections


127


are moveable into and out of position, and depending on their length can typically be moved from a first position, where they are typically even with the pins


121


, to a second position where they are uneven with the pins


121


.




Where the pins utilizing the holes


125


or missing sections


127


are especially long, the second position of un-evenness will be a position where they are forward of the pins


121


. Where the pins utilizing the holes


125


or missing sections


127


are short, the second position of un-evenness will be a position where they are rearward or more depressed than the pins


121


. As such, an indicated sign will be in the first case a protrusion or projection, and in the second case a shadow or depression indication.




To the rear of the fixed pin array structure


115


and shown suspended in air are sets of pin supports


131


which form an “8” shape. Pin supports


131


are made up of pin support segments


133


and a middle pin support segment


135


. The pin support segments


133


are generally trapezoidally shaped while the middle pin support segment is generally long with angled ends.




Also seen, but barely are plates


141


which lie behind and support the pin support segments


133


and


135


. Behind the plates


141


is a circuit board


145


. There are four clusters


151


of solenoids


153


, which are preferably latched solenoids which work mechanically like a ball point pen mechanism. One actuation pushes the pins forward and a second actuation causes the pins to spring back. This is done for simplicity of control protocol, but any sort of control can be used, either more complex or more simple than the solenoids


153


.




The circuit board


145


is shown as acting to support other circuitry as well as to support the solenoids


153


. Power lines


155


are seen as connecting a battery sub-housing


157


of a main rear housing


159


to the circuit board


145


. Main rear housing


159


can also house a transformer or other power conversion electronics where it is desired to plug the display chronometer


101


into the main house current system. In the alternative, the main rear housing


159


may have a direct current power jack in order to operate from a supplied wall mount transformer or the like.




A button set


161


is also connected to the circuit board


145


and may act through apertures


163


in the rear housing


159


to enable the user to set the current time. The button set


161


is also connected to a controller chip


165


. Controller chip


165


can receive time sets from the user through the button set


161


and is controllably connected to the solenoids


153


.




It has been stated that the solenoids


153


are preferably latched solenoids, operating such that one actuation pushes the pins forward and a second actuation causes the pins to spring back. Consequently the solenoids may either be fitted with a reset connection or in the alternative the user may have the ability to go into a reset mode where the button set


161


is used to synchronize the solenoids


153


for any out of phase timing inadvertently developed by technical problems.




Such technical problems may include insufficient battery power. There may be enough battery power to power the chip


165


but not enough to sufficiently power all of the solenoids


153


. In this case, the solenoids


153


may fall out of sequence and need to be re-set.




Further to the rear of the rear housing


159


are seen a battery sub-housing


157


cover


167


and a carry handle


169


. A series of four threaded members or rivets


171


are seen connecting the rear housing


159


, fixed pin array structure


115


, and decorative pin hole array


105


together.




Referring to

FIG. 8

, a side perspective view illustrates a cluster


151


of solenoids


153


. Each solenoid


153


includes a housing


175


and an actuator


177


. As can be seen, the actuators


177


may be connected to the plates


141


. Each of the plates


141


supports a series of actuatable pins


179


.




The actuatable pins


179


are shown as extending through the forward main plate


119


. The main plate


119


is shown with the array of fixed pins


121


removed in order to more clearly show the action. The number “2” is being displayed by the actuatable pins. As can be seen an upper row of pin support segments


133


supported by a plate


141


(not seen) are actuated to a forward position exposing the actuator


177


.




The vertical pin support segments


133


between the upper left end of the “2” and the bottom vertical section of that displayed numeral are in the retracted position showing only a very abbreviated section of its actuator


177


, but also showing its plate


141


at a rearward position such that the rearward ends of the actuatable pins


179


are exposed behind main plate


119


. Enough of these rearward positioned pins are located forward of the main plate


119


that they do not fall out of their alignment with the main plate


119


.




Referring to

FIG. 9

, a single operating component set for operating a single pin support segment


133


is shown. The pins


177


which fit through the pin support segment


133


are shown attached to the plate


141


. The plate


141


is shown in close proximity to the housing


175


such that the actuator


177


is not seen in FIG.


9


.




Referring to

FIG. 10

, an example of expression through actuatable pins


179


is shown. The “22” expressed is accomplished through the forward position assumed by the actuatable pins


179


. The surrounding array of fixed pins are shown as very short, only for the ability to illustrate the difference in extension of the actuatable pins


179


.




Referring to

FIG. 11

, a different example of expression through actuatable pins


179


is shown. The “88” expressed is accomplished through the rearward position assumed by withdrawal of the actuatable pins


179


. Again, the surrounding array of fixed pins are shown as very short, only for the ability to illustrate the difference in extension of the actuatable pins


179


.




While the present invention has been described in terms of a chronometer utilizing axial pin movement expression, and more particularly to particular structures which utilize a set and re-set mechanism to track physical protrusions through axial displacement of a pin matrix.




Although the invention has been derived with reference to particular illustrative embodiments thereof, many changes and modifications of the invention may become apparent to those skilled in the art without departing from the spirit and scope of the invention. Therefore, included within the patent warranted hereon are all such changes and modifications as may reasonably and properly be included within the scope of this contribution to the art.



Claims
  • 1. A display device comprising:a pin matrix having a plurality of parallel bores for supporting a plurality of pins mounted to slide within said bores; a plurality of pins each said pin associated with and within and slidably translatable within said plurality of bores; a reset surface toward which said pin matrix can be approachably moved to align an axial depth of said plurality of pins with respect to said pin matrix; a moveable belt having protruding symbols, and said pin matrix also translatable to engage a subset of said plurality of pins to contact at least one of said protruding symbols to enable subset of said plurality of pins to become axially displaced in congruence with said protruding symbol; mechanical means for moving said pin matrix in order to periodically re-align said plurality of pins and to periodically engaged said subset of said plurality of pins against said at least one of said protruding symbols; mechanical means for driving said moveable belt to change a position of said at least one of said protruding symbols, in order to enable expression of said at least one of said protruding symbols upon said periodic re-aligning of said plurality of pins and periodic engagement of a differently located subset of said plurality of pins against said at least one of said protruding symbols.
  • 2. The display device as recited in claim 1 and wherein said moveable belt having protruding symbols is set to advance at a rate proportional to the passage of time and wherein said at least one of said protruding symbols are indicative of such passage of time.
  • 3. The display device as recited in claim 1 wherein said mechanical means for moving said pin matrix in order to periodically re-align said plurality of pins and to periodically engage said subset of said plurality of pins against said at least one of said protruding symbols includes a cam.
  • 4. The display device as recited in claim 1 and wherein said reset surface is a flat clear display.
  • 5. A display device comprising:a pin matrix support having a plurality of parallel bores for slidably supporting a plurality of pins through said parallel bores; a first plurality of fixed pins supported through said pin matrix support, each said pin associated with and within and slidably translatable within said plurality of bores; a second plurality of actuatable pins slidably supported through said pin matrix support, said second plurality of actuatable pins divided into groups of at least two independently actuatable pin support segments; a plurality of solenoids, each solenoid having a housing and an actuator mechanically linked to one of said independently actuatable pin support segments, whereby actuation of any one of said plurality of solenoids will cause at least one of said second plurality of actuatable pins to move to at least one of a position in advance of said first plurality of fixed pins, a position rearward of said first plurality of fixed pins, and a position even with said first plurality of fixed pins.
  • 6. The display device as recited in claim 5 and wherein one of said at least two independently actuatable pin support segments formed by a plate attached to at least two of said second plurality of actuatable pins.
  • 7. The display device as recited in claim 5 and wherein said solenoids include at least one solenoid which is a latched solenoids operating such that one actuation pushes one of said independently actuatable pin support segments to a first position and a second actuation pushes one of said independently actuatable pin support segments to a second position.
  • 8. The display device as recited in claim 7 wherein said second position is a starting position from which said one actuation pushes one of said independently actuatable pin support segments to a first position.
  • 9. The display device as recited in claim 5 and wherein said first plurality of fixed pins are supported by a main pin support plate adjacent said pin matrix support.
  • 10. The display device as recited in claim 5 and further comprising a controller, controllably connected to said plurality of solenoids, to selectively control each of said groups of at least two independently actuatable pin support segments.
  • 11. The display device as recited in claim 10 wherein said controller to selectively controls each of said groups of at least two independently actuatable pin support segments to display symbols indicative of a passage of time.
US Referenced Citations (5)
Number Name Date Kind
3593515 Schockner et al. Jul 1971 A
4654989 Fleming Apr 1987 A
5311487 Mininni et al. May 1994 A
5494445 Sekiguchi et al. Feb 1996 A
6189246 Gorthala Feb 2001 B1