The present application pertains to aircraft gas turbine engines and, more particularly, to heat shields found in a combustor of the gas turbine engine and to a pin fin arrangement of such a heat shield for cooling purposes.
In gas turbine engines, the combustor performance directly impacts the overall fuel efficiency of the gas turbine engine and the pollutant emission. Heat shields, also known as float walls, have therefore been provided within combustors to allow the combustor to operate at higher temperatures with relatively low combustor pressure drops. As a result, the specific field consumption of gas turbine engines is enhanced.
For cooling purposes, the heat shields may be equipped with a plurality of pin fins oriented away from the combustion zone of the combustor. A coolant fluid circulates between the pin fins, thereby cooling the heat shields. Spent coolant fluid is then directed onto the exposed surface of the heat shields to perform film cooling. The fluid coolants are therefore used for two different types of cooling, namely internally through the pin array and externally via film cooling.
Fresh coolant fluid is introduced where film cooling effectiveness dies. Accordingly, coolant fluid introduction has an impact on the axial length of the heat shields. To ensure optimal coolant distribution, some circumferential rails and like deflectors have been added among pin fin arrays. However, such rails may introduce undesirable extra contact points, extra hot spots and stiffness discontinuity and this may have an impact on the overall durability of the heat shields.
According to a first embodiment, there is provided a heat shield unit for a gas turbine engine combustor, comprising: a panel body adapted to be secured to a combustor liner, the panel body having a first surface adapted to be oriented toward a combustion zone of a combustor, and a second surface adapted to be oriented toward the combustor liner, the panel body being separated in an upstream portion and a downstream portion; pin fins projecting from the second surface of the panel body, the pin fins being arranged in arrays of at least two different densities of volume of pin fins per unit volume, with one said densities in the upstream portion and another said densities in the downstream portion of the panel body, with a first density of the at least two different densities being lower than a second density of the at least two different densities; and connectors to connect the panel body to the combustor liner with a line between the upstream portion and the downstream portion of the panel body being aligned with fluid-coolant injection apertures in the combustor liner.
According to a second embodiment, there is provided a gas turbine engine combustor, comprising: a combustor liner defining a combustion volume, with apertures in the combustor liner for insertion of coolant fluid in the combustion volume; and at least one heat shield unit comprising a panel body secured to the combustor liner, the panel body having a first surface oriented toward the combustion zone, and a second surface oriented toward the combustor liner, pin fins projecting from the second surface of the panel body, the pin fins being arranged in arrays of at least two different densities of volume of pin fins per unit volume, with a first density of the at least two different densities being lower than a second density of the at least two different densities, with the panel body positioned relative to the apertures of the combustor liner for a location of the pin fins between the at least two densities to receive the coolant fluid, and connectors to connect the panel body to the combustor liner.
According to a third embodiment, there is provided a method for cooling a heat shield unit in a combustor liner of a gas turbine engine, the heat shield unit secured to the combustor liner and defining a gap therewith with pin fins projecting from the heat shield unit toward the combustor liner in the gap, the method comprising: injecting coolant fluid into the gap through apertures in the combustor liner; directing a first portion of said coolant fluid in a first direction through a first array of the pin fins; and directing a second portion of said coolant fluid in a second direction through a second array of the pin fins, the second portion of said coolant fluid having a greater volumetric flow value than that of the first portion of said coolant fluid by having a density of pin fins per unit volume in the second array different than a density of pin fins per unit volume in the first array.
Referring to
Referring concurrently to
The heat shield units 30 each have a panel body with a first surface 31 and a second surface 32. The panel body is railless, i.e., it does not feature rails or like elongated member extending on the surfaces 31 and 32. The first surface is relatively smooth and continuous and is oriented internally relative to the combustor 16, i.e., faces the combustion zone. The second surface 32 therefore faces toward the combustor liner 20.
Connector posts 33 project from the second surface 32 of the heat shield units 30. The connector posts 33 are spaced apart from one another to be in register with the connection bores 22 in the combustor liner 20. Accordingly, when the heat shield units 30 are anchored to the combustor liner 20, the connector posts 33 are threaded through the connection bores 22.
Fasteners 34 (e.g., nuts, washers, rings, etc) are operatively connected to the connector posts 33 so as to releasably fix the heat shield units 30 to the combustor liner 20. Free ends of the connector posts 33 and the fasteners 34 therefore project outside of the combustor liner 20 (e.g., in the plenum of the gas turbine engine).
Any other connection means may be used to secure the heat shield units 30 to the combustor liner 20, including blots, tabs, brackets, etc.
Referring concurrently to
Moreover, according to another embodiment, the pin fins of zone Z1 are shown having a greater height than the pin fins of zone Z2, causing a lower volume density of fins in zone Z2. Again, the array of pin fins within zone Z2 causes less restriction of flow than that of zone Z1, because of the reduced height. The array of pin fins of zone Z2 is particularly well suited to be opposite the jets 21 to allow coolant to flow into the combustor 16 from the adjacent plenum.
In zone Z3, there are pin fins with a diameter greater than that of zone Z1 or Z2. The arrangement of zone Z3 is therefore of lesser density than that of zone Z1, thereby causing less flow restriction. The larger pin fins may be less efficient in terms of cooling efficient. However, zone Z3 is adjacent to connector posts 33 which may act as heats sink to cool the heat shield units 30.
Accordingly,
Similarly, coolant fluid F1 entering the jets 21 opposite the heat shield unit 30B moves upstream according to direction F3, at which point the coolant fluid may be used to film cool the heat shield unit 30B, by passing beyond leading edge 37B, while a portion of the coolant fluid flows in direction F2, to film cool the downstream heat shield unit 30, etc.
Therefore, the flow of coolant fluid is split using a pressure differential induced by providing varying pin fin resistance, by selecting appropriate densities of pin fins. The pin fins 35 may have any pin height, diameter, section size, shape, etc. to affect the density and cause such flow restrictions to induce the appropriate pressure differential to dictate the flow of coolant fluid.
Number | Name | Date | Kind |
---|---|---|---|
2993337 | Cheeseman | Jul 1961 | A |
4292810 | Glenn | Oct 1981 | A |
4446693 | Pidcock et al. | May 1984 | A |
5024058 | Shekleton et al. | Jun 1991 | A |
5419115 | Butler et al. | May 1995 | A |
5695320 | Kercher | Dec 1997 | A |
5738493 | Lee et al. | Apr 1998 | A |
6000908 | Bunker | Dec 1999 | A |
6029455 | Sandelis | Feb 2000 | A |
6282905 | Sato et al. | Sep 2001 | B1 |
6341485 | Liebe | Jan 2002 | B1 |
6408628 | Pidcock et al. | Jun 2002 | B1 |
6484505 | Brown et al. | Nov 2002 | B1 |
6578627 | Liu et al. | Jun 2003 | B1 |
6681578 | Bunker | Jan 2004 | B1 |
6842980 | Young et al. | Jan 2005 | B2 |
7093439 | Pacheco-Tougas et al. | Aug 2006 | B2 |
7104067 | Bunker | Sep 2006 | B2 |
7363763 | Coughlan, III et al. | Apr 2008 | B2 |
7694522 | Nakae et al. | Apr 2010 | B2 |
7707835 | Lipinski et al. | May 2010 | B2 |
7748221 | Patel et al. | Jul 2010 | B2 |
7757492 | Intile et al. | Jul 2010 | B2 |
7926278 | Gerendás et al. | Apr 2011 | B2 |
20020056277 | Parry | May 2002 | A1 |
20080115499 | Patel et al. | May 2008 | A1 |
20100229563 | Woolford et al. | Sep 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20130055722 A1 | Mar 2013 | US |