TECHNICAL FIELD
This disclosure pertains to a coupler for releasably and lockably coupling an implement such as a bucket to the end of a boom, with the coupler having a mechanism for inhibiting unintentional release of the implement.
BACKGROUND
Powered digging or material-moving machines such as excavators
and backhoes typically have an operator-manipulable boom to which one of a variety of implements can be coupled. Typical implements include buckets of various sizes and shapes, rakes, clamshells, grab-buckets, rippers, augers, grapples, hammers, etc.
The machine operator must sometimes interchange implements to
perform different tasks. For example, an operator moving loose material with a bucket may encounter hard material which must be broken up before it may be moved with a bucket. In such a case, the operator may wish to remove the bucket from the machine's boom, mount a ripper on the boom, use the ripper to break up the hard material, then remove the ripper and remount the bucket in order to continue moving the broken material.
A coupler is commonly fixed at the end of the boom. The coupler includes a mechanism for coupling any one of the implements to the boom. The implements are adapted for such coupling by providing them with mounting pins which are engaged by the coupler in well known fashion. The coupler can be actuated by the operator in order to quickly and easily decouple an implement from the machine then recouple it to another implement, without requiring the operator to leave the machine's operating cab.
If the mounting pins of an implement are not properly engaged by the coupler it is possible for the implement to suddenly and unexpectedly decouple from the machine's boom. If this happens damage or injury may be caused to the coupler, to the implement or to nearby items or persons. This problem is addressed by the coupler described below.
The foregoing examples of the related art and limitations related thereto are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.
BRIEF DESCRIPTION OF DRAWINGS
Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
FIGS. 1 and 20 are respectively right and left side oblique lower front isometric views of the coupler.
FIGS. 2 and 21 are respectively right and left side isometric views of one of the coupler's lock links.
FIGS. 3 and 22 are respectively right and left side isometric views of one of the coupler's safety locks.
FIGS. 4 and 23 are respectively right and left side isometric views of one of the coupler's torsion springs.
FIGS. 5 and 24 are respectively right and left side isometric views of one of the coupler's cylinder mount links.
FIGS. 6 and 25 are respectively right and left side isometric views of the coupler's latching hook.
FIGS. 7 and 26 are respectively right and left side isometric views of the coupler's hydraulic cylinder.
FIGS. 8 and 27 are respectively right and left side oblique lower front isometric views of the coupler, and depict a portion of an implement having forward and rearward pins respectively positioned within the coupler's forward and rearward coupling apertures before activation of the coupler's safety locks and latching hook.
FIGS. 9 and 28 are respectively right and left side front elevation views, on an enlarged scale, of the FIG. 8 coupler.
FIGS. 10 and 29 are respectively right and left side section views, on an enlarged scale, taken (FIG. 10) with respect to line 10-10 shown in FIG. 9 and (FIG. 29) with respect to line 29-29 shown in FIG. 28.
FIGS. 11 and 30 are respectively right and left side section views, on an enlarged scale, taken (FIG. 11) with respect to line 11-11 shown in FIG. 9 and (FIG. 30) with respect to line 30-30 shown in FIG. 28.
FIGS. 12 and 31 are similar to FIGS. 8 and 27 respectively, but show the coupler after activation of the safety locks and before activation of the latching hook.
FIGS. 13 and 32 are respectively front elevation views, on an enlarged scale, of the coupler shown in FIGS. 12 and 31 respectively.
FIGS. 14 and 33 are respectively right and left side section views, on an enlarged scale, taken (FIG. 14) with respect to line 14-14 shown in FIG. 13 and (FIG. 33) with respect to line 33-33 shown in FIG. 32.
FIGS. 15 and 34 are respectively right and left side section views, on an enlarged scale, taken (FIG. 15) with respect to line 15-15 shown in FIG. 13 and (FIG. 34) with respect to line 34-34 shown in FIG. 32.
FIGS. 16 and 35 are similar to FIGS. 8 and 27; and to FIGS. 12 and 31 respectively, but show the coupler after activation of both the safety locks and the latching hook.
FIGS. 17 and 36 are respectively front elevation views, on an enlarged scale, of the coupler shown in FIGS. 16 coupler and 35 respectively.
FIGS. 18 and 37 are respectively right and left side section views, on an enlarged scale, taken (FIG. 18) section view taken with respect to line 18-18 shown in FIG. 17 and (FIG. 37) with respect to line 37-37 shown in FIG. 36.
FIGS. 19 and 38 are respectively right and left side section views, on an enlarged scale, taken (FIG. 19) with respect to line 19-19 shown in FIG. 17 and (FIG. 38) with respect to line 38-38 shown in FIG. 36.
DESCRIPTION
Throughout the following description specific details are set forth in order to provide a more thorough understanding to persons skilled in the art. However, well known elements may not have been shown or described in detail to avoid unnecessarily obscuring the disclosure. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
Coupler 10 includes right and left upper side plates 12, 14 which transversely locate pins 16, 18. Plates 12, 14 are fixed in spaced-apart, substantially parallel relationship by right and left lower side plates 20, 22. Plates 20, 22 are in turn fixed in spaced-apart, substantially parallel relationship by flanges 24, 26, 28. More particularly, the right and left outward ends of rearward flange 24 bridge across and are welded to the inward sides of side plates 12, 14, 20, 22. The right and left outward ends of upper and lower forward flanges 26, 28 are welded to the inward sides of lower side plates 20, 22. The opposed ends of pin 16 are journalled for rotation in bearings 19, 21 which are mounted in the upper forward ends of right and left upper side plates 12, 14 respectively. The opposed ends of pin 18 are journalled and fixed in bearings 23, 25 which are mounted toward the rearward ends of right and left upper side plates 12, 14 respectively.
Transversely aligned forward pin-receiving apertures 30 are formed in the forward ends of lower side plates 20, 22. Transversely aligned rearward pin-receiving apertures 32 are formed in the rearward ends of lower side plates 20, 22. Forward pin-receiving apertures 30 have upward and forward-facing openings 34. Rearward pin-receiving apertures 32 have downward-facing openings 36.
Latching hook 38 (best seen in FIGS. 6 and 25) is pivotally mounted on pin 40 which extends through latching hook 38's upper aperture 41. The right end of pin 40 is journalled for rotation in bearing 42 (FIG. 1) which is mounted in the lower rearward end of upper side plate 12 and in the upper rearward end of lower side plate 20. The left end of pin 40 is journalled for rotation in bearing 44 (FIG. 20) which is mounted opposite bearing 42 in the lower rearward end of upper side plate 14 and in the upper rearward end of lower side plate 22.
Right side safety lock 46 (best seen in FIG. 3) has a ratchet face 55 and upper and lower apertures 56, 58. Left side safety lock 48 (best seen in FIG. 22) has a corresponding ratchet face 59 and upper and lower apertures 60, 62. Right side torsion spring 108 (best seen in FIG. 4) is positioned on the inward side of right side safety lock 46 to transversely align the coiled portion of spring 108 with aperture 56. Left side torsion spring 110 (best seen in FIG. 23) is positioned on the inward side of left side safety lock 48 to transversely align the coiled portion of spring 110 with aperture 60. Upper apertures 56, 60 are transversely aligned with one another and with the coiled portions of torsion springs 108, 110. Safety lock upper pivot pin 50 extends through apertures 56, 60 and through the coiled portions of right and left torsion springs 108, 110 as shown in FIGS. 1 and 20. The opposed ends of pin 50 are journalled for
rotation in bearings 52, 54 which are mounted in the upper forward ends of lower side plates 20, 22 as shown in FIGS. 1 and 20 respectively. Safety locks 46, 48 are thus spaced apart and pivotally mounted on safety lock upper pivot pin 50.
Right side cylinder mount link 64 (best seen in FIG. 5) has an engagement face 67 for engaging ratchet face 55 of right side safety lock 46 as explained below, and has upper forward and lower rearward apertures 68, 70. Left side cylinder mount link 66 (best seen in FIG. 24) has a corresponding engagement face 71 and upper forward and lower rearward apertures 72, 74. Lower rearward apertures 70, 74 are transversely aligned with one another; and upper forward apertures 68, 72 are transversely aligned with one another. Cylinder mount link pivot pin 76 extends through lower rearward apertures 70, 74 as shown, for example, in FIGS. 10 and 29. The opposed ends of pin 76 are journalled for rotation in bearings 78, 80 which are mounted in the lower forward ends of lower side plates 20, 22 respectively as shown in FIGS. 1 and 20 respectively. Cylinder mount links 64, 66 are thus spaced apart and pivotally mounted on cylinder mount link pivot pin 76.
As best seen in FIGS. 6 and 25, latching hook 38 has right and left halves which are transversely aligned and joined by sleeve 83 and spacer 87. Latching hook 38's upper aperture 41 extends transversely through sleeve 83. Transversely aligned central apertures 88 extend through latching hook 38's right and left halves between sleeve 83 and spacer 87. Sleeve 86 is fixed on the rod end of hydraulic cylinder 82 (best seen in FIGS. 7 and 26). Sleeve 86 is positioned between latching hook 38's right and left halves to transversely align sleeve 86's aperture 89 with and between apertures 88. Cylinder rod end pivot pin 84 extends through apertures 88, 89 as shown, for example, in FIGS. 10 and 29. The rod end of hydraulic cylinder 82 is thus pivotally coupled to latching hook 38.
Right side lock link 94 (best seen in FIG. 2) has upper and lower apertures 98, 100. Left side lock link 96 (best seen in FIG. 21) has corresponding upper and lower apertures 102, 104. As previously explained, cylinder mount links 64, 66 are spaced apart on cylinder mount link pivot pin 76. Right side lock link 94 is positioned on the right side of right side cylinder mount link 64 to transversely align apertures 68, 98. Left side lock link 96 is positioned on the left side of left side cylinder mount link 66 to transversely align apertures 72, 102. The cylinder end of hydraulic cylinder 82 is positioned between cylinder mount links 64, 66 to transversely align cylinder end aperture 90 (best seen in FIGS. 7 and 26) with apertures 68, 72, 98, 102. Cylinder end pivot pin 92 extends through the aligned apertures 68, 72, 98, 102, 90 as shown, for example, in FIGS. 11 and 30. The cylinder end of hydraulic cylinder 82 is thus pivotally coupled to cylinder mount links 64, 66 and to lock links 94, 96.
As previously explained, safety locks 46, 48 are spaced apart on safety lock upper pivot pin 50. More particularly, right side lock link 94 is positioned on the right side of right side safety lock 46 to transversely align apertures 58, 100; and left side lock link 96 is positioned on the left side of left side safety lock 48 to transversely align apertures 62, 104. Safety lock lower pivot pin 106 extends through aligned apertures 58, 62, 100, 104 as shown, for example, in FIGS. 11 and 30. Lock links 94, 96 are thus pivotally coupled between safety locks 46, 48 and cylinder mount links 64, 66.
Right and left side torsion springs 108, 110 are coiled around safety lock upper pivot pin 50 as previously explained. The springs' upwardly extending ing ends 112, 114 bear against upper forward flange 26. The springs' transversely inwardly extending lower ends 116, 118 are seated within transverse recesses (not shown) in safety locks 46, 48 respectively. Springs 108, 110 thus bias safety locks 46, 48 clockwise with respect to safety lock upper pivot pin 50, as shown, for example, in FIGS. 10, 11, 14, 15, 18 and 19.
In operation, pins 16, 18 are coupled to a machine's boom (not shown) in well known fashion to mount coupler 10 on the end of the boom. The machine operator initially actuates a cab-mounted control mechanism (not shown) to fully retract hydraulic cylinder 82 into the retracted position best seen in FIGS. 10-11 and 29-30. Such retraction pivots latching hook 38 forwardly (i.e. clockwise about pivot pin 40, as viewed in FIGS. 10-11; and counterclockwise about pivot pin 40, as viewed in FIGS. 29-30) such that latching hook 38 is clear of rearward aperture 32; and pivots cylinder mount links 64, 66 rearwardly (i.e. clockwise about pivot pin 76, as viewed in FIGS. 10-11; and counterclockwise about pivot pin 76, as viewed in FIGS. 29-30). Such pivotal movement of cylinder mount links 64, 66 draws lock links 94, 96 rearwardly (i.e. toward the right, as viewed in FIGS. 10-11; and toward the left, as viewed in FIGS. 29-30) on cylinder end pivot pin 92. Since lock links 94, 96 are coupled between cylinder mount links 64, 66 and safety locks 46, 48 on pivot pins 76, 106 respectively, safety locks 46, 48 are also drawn rearwardly (i.e. pivoted counterclockwise about safety lock upper pivot pin 50 as viewed in FIGS. 10-11; and clockwise about pin 50 as viewed in FIGS. 29-30), such that safety locks 46, 48 are clear of aperture 30 as shown in FIGS. 8-11 and 27-30.
The operator then manoeuvres the machine's boom to position forward mounting pin 120 of implement 124 within coupler 10's forward pin-receiving receiving aperture 30 and to position implement 124's rearward mounting pin 122 within coupler 10's rearward pin-receiving aperture 32 as shown in FIGS. 8 and 27.
The operator next actuates the aforementioned control system to extend the cylinder end of hydraulic cylinder 82 to the left, as viewed in FIGS. 14-15 (i.e. to the right, as viewed in FIGS. 33-34). Such extension pivots cylinder mount links 64, 66 forwardly (i.e. counterclockwise about pivot pin 76, as viewed in FIGS. 14-15; and clockwise about pivot pin 76, as viewed in FIGS. 33-34). Such pivotal movement of cylinder mount links 64, 66 moves lock links 94, 96 forwardly on cylinder end pivot pin 92. Since lock links 94, 96 are coupled between cylinder mount links 64, 66 and safety locks 46, 48 on pivot pins 76, 106 respectively, safety locks 46, 48 are also drawn forwardly (i.e. pivoted clockwise about safety lock upper pivot pin 50 as viewed in FIGS. 14-15; and counterclockwise about pin 50 as viewed in FIGS. 33-34), such that safety locks 46, 48 extend within aperture 30 atop implement 124's forward mounting pin 120. The ratchet faces 55, 59 of safety locks 46, 48 engage the locking faces 67, 71 of cylinder mount links 64, 66 preventing withdrawal of pin 120 from aperture 30 as shown in FIGS. 12-15 and 31-34. Springs 108, 110 bias safety locks 46, 48 clockwise with respect to safety lock upper pivot pin 50 as viewed in FIGS. 14-15 (i.e. counterclockwise as viewed in FIGS. 33-34) maintaining engagement of safety locks 46, 48 atop pin 120 and preventing withdrawal of pin 120 from aperture 30 in the event of a hydraulic system failure.
The operator continues to extend the rod end of hydraulic cylinder 82 to the right, as viewed in FIGS. 18-19 (i.e. to the left, as viewed in FIGS. 37-38), thereby pivoting latching hook 38 counterclockwise about pivot pin 40 as viewed in FIGS. 18-19 (i.e. clockwise about pivot pin 40 as viewed in FIGS. 37-38) to extend latching hook 38 into rearward aperture 32 beneath implement 124's rearward mounting pin 122, preventing withdrawal of pin 122 from aperture 32 as shown in FIGS. 16-19 and 35-38.
To release implement 124 from coupler 10, the operator first actuates the aforementioned control system to retract hydraulic cylinder 82's rod end to the left as viewed in FIGS. 14-15 (i.e. to the right as viewed in FIGS. 33-34). Such retraction pivots latching hook 38 forwardly (i.e. clockwise about pivot pin 40 as viewed in FIGS. 14-15; and counterclockwise about pivot pin 40 as viewed in FIGS. 33-34) into the position shown in FIGS. 12-15 and 31-34 in which latching hook 38 is clear of rearward aperture 32. The operator continues to retract hydraulic cylinder 82's cylinder end to the right as viewed in FIGS. 10-11 (i.e. to the left as viewed in FIGS. 29-30). Such retraction pivots cylinder mount links 64, 66 rearwardly, drawing lock links 94, 96 rearwardly on cylinder end pivot pin 92 thereby overcoming the biasing of springs 108, 110 and drawing safety locks 46, 48 rearwardly such that safety locks 46, 48 are clear of aperture 30 as shown in FIGS. 8-11 and 27-30. It will be noted that springs 108, 110 maintain engagement of safety locks 46, 48 atop pin 120 during release of implement 124 from coupler 10 until the final phase of the release operation in which the springs'biasing is overcome as aforesaid, thus preventing withdrawal of pin 120 from aperture 30 in the event of a hydraulic system failure before completion of the release operation.
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.