Pinch grip hanger loading mechanism

Information

  • Patent Grant
  • 6711808
  • Patent Number
    6,711,808
  • Date Filed
    Friday, February 15, 2002
    22 years ago
  • Date Issued
    Tuesday, March 30, 2004
    20 years ago
Abstract
A pinch grip hanger mechanism dispenses pinch grip hangers, one at a time, and then opens the pinch grips for insertion of a garment. The insertion of a garment triggers the closing of the pinch grips, and reciprocation of a hanger feed push plate to dispense another hanger. The device may also automatically attach size indicia to the hanger as the hanger is dispensed. The closing of the pinch grips is initiated by safety triggers, which are triggered by insertion of a garment. This provides a safety feature for the device, since the operator needs to use both hands to hold the garment taut for insertion. Thus, both hands are away from the device at the time the pinch grips are opened and closed.
Description




FIELD OF THE INVENTION




The present invention relates generally to a pinch grip hanger mechanism, and more particularly pertains to a clip hanger loading mechanism providing a fast and efficient mechanism and method for loading garments into pinch grip clip hangers.




BACKGROUND OF THE INVENTION




Consumer taste and fashion have dictated a desire for mass-produced, but well-fitted garments, which are distributed and sold throughout the United States. Large national retailers of clothing generally contract with a plurality of clothing manufacturers to produce uniform standardized clothing, which is essentially identical from batch to batch, even though manufactured by different entities. These manufacturers in turn produce the clothing at their own plants, or in many cases, subcontract the production of the garments to manufacturers based in the Far East, for instance, in Hong Kong, Taiwan, Singapore and South Korea.




In the retail clothing industry clothing is typically suspended from hangers at the point of purchase. Such hangers are often inexpensive ship-on types and under prevailing garment-on-hanger programs, the garment is shipped from the manufacturer to the retailer while suspended from a hanger. However, the time and labor costs associated with the operation of taking each hanger, loading a garment into the hanger and then placing the hanger with the garment affixed thereon in a suitable form for shipment is not insignificant at the manufacturing level.




DISCUSSION OF THE PRIOR ART




For these reasons the industry has developed a variety of devices partially automating the operation of suspending garments from hangers. In U.S. Pat. No. 4,349,127 to Savard a device is provided which holds a stack of hangers and, when the operator is ready for the operation of affixing the garment thereon, feeds the hangers one by one in a position suitable for carrying out the operation. After one hanger with the garment affixed thereon is removed, the device permits the next hanger to be automatically fed to the operator who affixes the next garment thereon.




Another device which automatically advances hangers, one at a time, to an operator is the Hangermatic 589 manufactured by Trim-Master, 4860 North 5th Street Highway, Temple, Pa. The Hangermatic 589 includes a pair of magazine towers, which contain a vertical stack of hangers there between. The hangers rest on a plate member and are selectively engaged by a reciprocating plate, which selectively engages the lowermost hanger and urges it outwardly to a stop means on an outer plate, which becomes extended. The hanger is thereby held in an extended position at which point the operator may affix a garment to the hanger and then remove the hanger. After removal of the hanger the outer plate, which is spring loaded returns to the inner plate activating a control, which returns the reciprocating plate to its original position. In a fully automatic mode, the reciprocating plate returns to pick up another hanger from the magazines and advance it to the extended position.




A modified form of this device that provided automatic feed for pants hangers having a steel spring clam shell design was also developed. In this hanger, a steel retaining clip was manually clamped over the clam shell to secure the garment. Use of the hangers in this device required a manual operation to slide the steel clip over the clam shell to close the retention clip on the garment.




For purposes of displaying garments suspended on hangers in an orderly and attractive manner to the retail customer, it is often desired to affix an indicating means on the hanger in a position visible to the retail customer while the hanger is suspended on a rack. The indicating means identifies some attribute of the garment suspended from the hanger, such as size, quality, color, manufacturing data, or pattern.




To accommodate the various types of hangers available in the industry numerous indicating means have been developed in a variety of shapes, sizes and materials. For instance, U.S. Pat. Nos. 4,322,902, Des. 341,947 and Des. 332,180 and World Publication No. 90/09651 all disclose plastic indicia-bearing caps attached to the top of the hook. In U.S. Pat. Nos. 4,115,940, 5,096,101, 5,199,608 and 5,238,159, indicia-bearing flanges which attach an indicia-bearing sizer substantially at the junction of both the hook and the body member are disclosed.




Typically, the indicating means are manually affixed. However, a system for automatically affixing indicating indicia-bearing size caps to the top of a garment hanger is disclosed in U.S. Pat. Nos. 5,272,806 and 5,285,566 to Marshall, et al. which are assigned to the assignee of the present invention.




The system disclosed in the Marshall, et al. patents discloses an improvement to the Hangermatic 589 device and includes a third magazine to receive a bundle of size caps which are individually attached to the hangers as they are dispensed. Each of the magazines on the improved Hangermatic are independently adjustable to configure the device to variety of hanger configurations. In the Marshall et. al. device, the configuration of the reciprocating plate is altered to provide a cutout which conforms to the exterior dimension of the color and index-coded size cap. In operation, a single index size cap are a single hanger are withdrawn from their respective magazines and the index cap is secured to the hanger as the plate reciprocates forwardly to the extended position for attachment of a garment.




However, none of the above-mentioned devices can accommodate newer model pants hangers, which have a spring action pinch grips. These prior art devices are unsuitable for use with the pinch grip hangers since both pinch grips are normally biased to a closed position by a spring and both must be opened to load a garment into the grips. At the present time this requires an operator to perform four steps. Using one hand the operator must open the first pinch grip and then using the other hand to suspend the garment, one side of the garment is placed in the grip. This process is then repeated for the other pinch grip. With the second pinch grip the operator must also simultaneously tension the garment between the clips, and since both hands are already occupied, the tensioning step may require additional manual movements. At a minimum, four manual steps or movements are required.




Further, some pinch grip hangers have plastic hooks, adapted to receive a size cap related to a characteristic of the garment to be loaded into the hanger. The placement of the size cap on each device requires either a separate machine, such as the previously described prior art device, or manual application of the size caps. Therefore, the labor required to correctly load or secure and size the garment is increased, resulting in higher labor costs and lower productivity.




The object of the present invention is to overcome these obstacles with a mechanism which automatically presents the hanger to the operator and automatically opens and closes the new style hanger clips for insertion of the garment. Optionally, the invention can automatically attach the size cap on the hanger as it is presented to the operator for garment loading. The invention promotes safe and efficient operation of the placement of garments and size indicias on pinch grip hangers.




SUMMARY OF THE INVENTION




The present invention relates to a pinch grip hanger mechanism, which allows an operator to safely, quickly, and efficiently attach garments to hangers. In the preferred embodiment of the invention the device includes a magazine for holding a plurality of hangers. A reciprocating push plate removes a single hanger from the magazine while advancing it in a first direction to a stop position. At the stop position movement of the hanger in the first direction ceases. A means for actuating the pinch grip cylinders is initiated when the hanger reaches the stop position. When the hanger ceases movement, each of two pinch grip cylinders project a ram onto each of the two pinch grips of the hanger, which enables the simultaneous opening of both hanger pinch grips. A means is provided for actuating the pinch grip cylinders a second time when the garment is loaded, which retracts the projected ram, enabling the pinch grips of the hanger to close. When the pinch grips of the hanger are closed and the rams retracted, the operator can remove the hanger/garment combination, and hang it on a rack for delivery to a shipping container. As the garment is removed, the reciprocating push plate is actuated to reciprocate the push plate in a second direction to retract the plate and then begin another cycle of operation.




The invention further includes a safety trigger mechanism that allows the pinch grip cylinders to be remotely actuated by the insertion and removal of the garment, while the garment is held between the hands of the operator. This triggering arrangement prevents inadvertent injury to the operator, since both hands are outside the device when the pinch grip cylinders are being actuated.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a plan view of the hanger mechanism of the present invention illustrating a plurality of hangers in the magazine and a hanger extended to the garment loading position.





FIG. 2

is a side elevation view of the hanger mechanism, illustrated in

FIG. 1

with hangers in the magazine and a hanger extended to the garment loading point.





FIG. 3

is a front elevation view of the hanger mechanism further illustrating the present invention with the pinch grip rams extended and the hanger pinch grips open for garment loading.





FIG. 4

is a plan view of the hanger mechanism with the hanger push plate extended, and a hanger positioned at the garment loading point.





FIG. 5

is a side elevation view of the hanger mechanism, which further illustrates the garment insertion triggers and magazine positioning.





FIG. 6

is a schematic view of a pneumatic control circuit used in the preferred embodiment of the invention.











DETAILED DESCRIPTION OF THE PRESENT INVENTION




This invention relates to a device, which is intended for use in the garment industry. Specifically, this device promotes the safe and efficient operation of placing garments on hangers for subsequent shipment and display. The present invention is intended for use with pinch grip hangers.




As illustrated in

FIGS. 1-5

, the present invention includes a number of symmetrical parts, both in the pinch grip mechanism described and the hanger loaded in the mechanism. In many cases, a single functional element, such as the hanger magazine


102


is formed of two symmetrical parts


102




a


,


102




b


. In the description that follows, reference to a part having symmetrical components may occur with the use of a single reference numeral, referring to both parts, in order to facilitate the description.




As illustrated throughout the Figures, a hanger magazine


102


is provided for vertically storing and loading a plurality of hangers


100


for the mechanism. The hangers are placed in the magazine


102


either singularly or as an attached group of hangers held together by a clip (not illustrated). The magazine includes a pair of upwardly extending receptacles


102




a


,


102




b


that are spaced above a main base


94


, as best illustrated in FIG.


5


. When hangers are loaded into the magazine, each hanger is oriented flat to the horizontal main base


94


with the clip portion of the hanger having its opening side facing the operator.




As shown in

FIGS. 1

,


4


and


5


, the magazines


102




a


,


102




b


are adjustably suspended above main base


94


, and attached to intermediate base members


104




a


,


104




b


by means of brackets


95




a


,


95




b


. Pinch grip ram cylinders


114


are used to open the hanger pinch grips, and are also attached to base members


104


as illustrated in

FIGS. 3 and 5

. Intermediate base members


104


are supported above main base


94


by means of inverted unshaped support bracket


93


. The brackets


95




a


,


956




b


suspend the magazines


102




a


,


102




b


from the base members


104




a


,


104




b


, so that the lower portions of magazines


102




a


,


102




b


are elevated a defined distance above main base


94


, as will be hereinafter discussed in detail. The main base


94


is supported by legs


98




a


,


98




b


and


96


, which together provide a stable platform for the device and allow the device to be located at an elevation and location convenient to the operator.




The distance between base members


104




a


and


104




b


can be laterally adjusted on support


93


to allow various sizes of hangers


100


to be used in the mechanism. The base members


104


are adjusted by means of adjustment holes, two of which are identified at


92




a


,


92




b


. This enables magazines


102




a


,


102




b


and ram cylinders


114




a


,


114




b


to be moved into proper positions on either side of a centerline axis of the mechanism for use of the mechanism with various hanger lengths or sizes. In a preferred embodiment of the mechanism, the centerline axis is defined by the reciprocal movement of the push plate


106


.




The push plate


106


is designed so that other hangers in the magazine


102


are retained in the magazine, and do not snag on the push plate


106


or otherwise leave the magazine when the push plate is in motion. The feed mechanism is a “slice feeder” in which the push plate


106


reciprocates back and forth under the magazine


102


and appears to be slicing off a single hanger


100


with each reciprocation. The dimensions and position of the push plate


106


with respect to the magazine


102


may be adjusted so that the device can accommodate a variety of hanger thickness, or alternately the device may utilize matched sets of magazines and plates, with each set appropriate for a specific hanger design. In operation, the next hanger in the magazine


102


is only released from the magazine


102


when the push plate has fully reciprocated to its rearward position, as illustrated in FIG.


5


. As the push plate


106


is retracted under the magazines


102


, a single hanger


100


is released from the magazine and drops onto main base


94


. The bottoms of magazines


102


are adjusted to be approximately one hanger thickness above the main base


94


. As the push plate begins its cycle of operation, the push plate


106


reciprocates forwardly to engage the hanger


100


on main base


94


. As illustrated in

FIG. 4

, the hook of the hanger is not initially engaged, as it falls into a cut out portion


107


in the push plate


106


that extends between two hanger engaging arms


109




a


and


109




b


. As the push plate


106


advances, the engaging arms


109




a


,


109




b


engage the horizontal support bar


105


of the hanger


100


, and begin to advance the hanger towards the operator. Only a single hanger is advanced at a time, since the dimensions of the slot below the magazine and the push plate


106


are too close to allow a subsequent hanger to be released. Alternatively, reciprocating pairs of alternating pins may be used at the base of each magazine to dispense a single hanger for each reciprocation of the push plate.




During the slice feeding, the push plate


106


moves forward and then backwards under the next to be dispensed hanger, with the push plate sliding under the next to be released hanger, which is constructed from movement by magazine


102


. The sliding surface of push plate


106


prevents the hanger above the push plate


106


from dropping to the main base


94


until the push plate


106


is fully retracted to the position illustrated in FIG.


5


. At that time, the next to be dispensed hanger is exposed to the main base


94


, which allows the stack of hangers to drop downwardly so that the next hanger to be dispensed rests on the main base


94


. This hanger is then advanced with the next reciprocation. Additionally, the push plate thickness of push plate


106


may be made variable with adjustable shims that will accommodate hangers having a different thickness. The thickness of the hanger and the dimensions of the dispensing slot and the thickness of the push plate


106


prevent multiple hangers in the magazine from being dispensed or causing the device to jam on a second hanger.




The present invention is intended to work with either wire hook hangers or plastic hook hangers, and the forgoing description is equally applicable to both types of hangers. Optionally, when plastic hook hangers are used, it may be desirable to automatically affix a size cap to the hanger at the time the hanger is positioned for garment loading. The following description is relevant to this option.




When desired, the present invention enables the size caps to be automatically attached to the hook portion


111


of the hanger


100


. As illustrated in

FIGS. 1-5

, a size cap magazine


110


may be located between the hanger magazines


102




a


,


102




b


and the push plate reciprocating cylinder


112


. The mechanism works in concert with the reciprocating action of the push plate


106


. Again using a slice feeder, a portion of the push plate


106


is designed to remove a single size cap


101


from the size cap magazine


110


each time the device moves towards the operator, and is then affixed to the hanger as the hanger advances towards the operator. As described previously with respect to the hangers, subsequent size caps in the magazine are prevented from release from the size cap magazine


110


by the dimensions of the opening below the magazine, the thickness of the size cap and the thickness of the push plate


106


immediately following the receptacle or cut out for the size cap. The leading edges of the push plate arms


109




a


,


109




b


may be supplied with compressible resilient engaging means at the point of engagement with the hanger support bar


105


. This resilient mounting allows the size cap to be forced onto the flange


120


of hanger hook


111


of the hanger


100


, without placing extraordinary stress on the hanger hook


111


, the flange


120


of hanger hook


111


, or the hanger


100


. Alternately, a separate resiliently mounted receptacle may be formed in the push plate


106


to receive the size cap prior to the engagement of the push plate arms


109




a


,


109




b


with the hanger support bar


105


.




The following is an example of the operation of the present invention utilizing size caps


101


that are mounted on a hanger hook


111


. Typically the hanger


100


and the size cap


101


have engagement formations which require a certain amount of force to overcome the resistance, but upon application of such force in the engagement of the two pieces, the hanger


100


and size cap


101


snap fit to one another. The snap fit may be permanent, as taught by U.S. Pat. No. 5,604,975, or releasable, as taught by U.S. Pat. No. 5,794,363. Both of these patents are assigned to the assignee of the present invention, and the disclosures of both patents are incorporated herein by reference thereto. As the push plate


106


begins its first reciprocal movement towards the operator, a size cap


101


is removed from the size cap magazine


110


. The removed size cap is captured within a cut out or a receptacle


178


(illustrated in

FIG. 4

) mounted on the push plate


106


and fed to the flange portion


120


of the hook


111


to which it will be attached. Before the engagement arms


109




a


,


109




b


engage the hanger support bar


105


, the size cap is advanced over the hanger flange


120


, and by the time the engagement arms


109




a


.


109




b


engage the hanger, the flange


120


is positioned within an internal recess in the size cap


101


. The hanger and size cap assembly, with the cap loosely applied to the flange


120


of the hanger


100


, are moved towards a hanger stop position at hanger stop


103


. Upon reaching the hanger stop


103


, the hanger


100


and hanger bar


105


are stopped. However, the push plate


106


continues to move towards the operator a short distance. This distance enables compression of the resilient engagement tips at


109




a


,


109




b


which allows the push plate


106


to force the snap fit engagement of size cap


101


to flange


120


of hanger hook


111


. Due to the compressive force imparted on the size cap by the push plate


106


as it moves through the resilient mounting at


109




a


,


109




b


, the size cap is firmly seated on hanger flange


120


in a snap fit engagement with the hanger. The resilient mounting of the push plate


106


insures that the force imparted upon the hanger


100


is not so great to damage the hanger hook


111


or the hanger support bar


105


. Alternately the same effect may be accomplished by resiliently mounting a size cap receptacle to push plate


106


. The resilient engagement allows a small amount of over travel which forces the size cap onto the hook without damaging the hook.




Alternately, the push plate portion


109


can be formed without such a resilient mounting at either location. In such instances, the velocity of the push plate


106


is great enough that on initial impact of the push plate


106


with the hanger


100


, the inertia of the push plate overcomes the resistance of the snap fit engagement between the flange


120


and the size cap


101


and firmly secures the size cap


101


to the flange


120


.




The push plate


106


is advanced and retracted by a reciprocating cylinder


112


. In the example shown in

FIGS. 1-5

, the reciprocating cylinder


112


is a double acting pneumatic cylinder, however, it is understood that the reciprocating cylinder could be of a variety of other designs including but not limited to hydraulic cylinders, electric solenoids, or mechanical drives such as rack and pinion gear drive, or any other means of extending and retracting the push plate in an efficient manner. The reciprocal movement of the push plate


106


defines a centerline axis for the mechanism.




As the push plate


106


is advanced towards the operator, and after the push plate has engaged the size cap and hanger


100


, and positioned the hanger at the hanger load position, a control engagement cam


125


(illustrated in

FIG. 4

) engages an pneumatic switch


124


, which initiates a pneumatic signal which is sent through the pneumatic control system to actuate a pair of pinch grip cylinder rams


114




a


,


114




b


. The stroke of cylinder


112


limits the travel of the push plate


106


so that there is no further movement of the push plate after reaching a stop position and hanger stop


103


. While

FIG. 4

has illustrated the pneumatic switch


124


as mounted above main base


94


to better illustrate the mechanism for description, in the preferred embodiment, it is located below the main base


94


to facilitate mounting of the pneumatics. When the hanger reaches the stop position, each of the pinch grip cylinders


114




a


,


114




b


project rams


122




a


,


122




b


onto their respective pinch grips of the hanger


100


, opening the pinch grips


90




a


,


90




b


and overcoming the opposition of the pinch grips spring which keeps the pinch grip in a normally closed position.





FIG. 6

illustrates a preferred pneumatic control circuit for use with the present invention. The control circuit is pneumatic, but the principles described below but could be adapted for a variety of control mechanisms, including electrical and hydraulic. The control circuit includes a supply valve


132


, a pneumatic regulator


133


, a manifold


128


, reciprocating cylinder spool valve


134


, a forward motion pneumatic valve


126


, ram cylinder pneumatic valve


124


, pneumatic control valves


117




a


,


117




b


, reciprocating cylinder


112


, and pinch grip cylinders


114




a


,


114




b.






As illustrated in

FIG. 6

, a pneumatic supply line


150


supplies pneumatic pressure for the operation of the device and the control system. An off/on switch


132


provides that when the apparatus is off, air pressure from the control system in the apparatus is vented to atmosphere. The air pressure from the on/off supply switch


132


may then be filtered, dried or otherwise treated and the system is protected from excess pressure by a pneumatic regulator


133


. In the preferred embodiment, a low pressure control circuit is used having a range of 60 psi to 80 psi, with a nominal set point of 70 psi. The incoming pneumatic pressure is then routed via a supply line


152


to a supply manifold, schematically illustrated at


128


. Air pressure for the actuation of the pinch grip cylinder


114


(


a


) and


114


(


b


) is provided via supply line


154


to the ram cylinder pneumatic valve


124


. Ram cylinder pneumatic valve


124


is actuated by a control engagement cam


125


which is mounted on push plate


106


, but is schematically illustrated in

FIG. 6

as mounted on the cylinder rod


158


of the reciprocating cylinder


112


. Also illustrated schematically is the reversing cam


127


, which engages forward motion control valve


126


, which initiates a new cycle of operation. As the reciprocating cylinder


112


is powered in extension, the cylinder rod


158


and push plate


106


are advanced in the direction of arrow A in

FIG. 6

until the control engagement cam


125


engages ram cylinder pneumatic valve


124


. As illustrated in

FIG. 6

, the pneumatic pressure in supply line


154


is powering the pinch grip cylinders


114


(


a


) and


114


(


b


) in the upward direction so that the ram


122


(


a


) and


122


(


b


) are retracted from their operating position. As the control engagement cam


125


engages ram cylinder pneumatic valve


124


, the spool in valve


124


is displaced in the direction of arrow A, enabling the pneumatic cylinders


114


(


a


) and


114


(


b


) to be powered to extension, or downwardly, with rams


122


(


a


) and


122


(


b


) being directed downwardly into engagement with the pinch grips at the hanger load position. As illustrated in

FIG. 6

, the spool for valve


124


is spring loaded so that as long as the control engagement cam


125


remains in engagement with the ram cylinder pneumatic valve


124


, the pneumatic cylinders


114


(


a


) and


114


(


b


) remain powered with the rams


122


(


a


) and


122


(


b


) engaging the pinch grips. As will be hereinafter explained, when the reciprocating cylinder


112


is retracted, the spool in ram cylinder pneumatic valve


124


will shift again to the position illustrated in

FIG. 6

, causing the pinch grips cylinders


114


(


a


) and


114


(


b


) to be powered upwardly, withdrawing the rams


122


(


a


) and


122


(


b


) from engagement with the pinch grips, and allowing the pinch grips to close on the garment being loaded.




As illustrated in

FIG. 6

, the reciprocating cylinder


112


is in a semi-retracted position after the reversing cam


127


has engaged forward motion control valve


126


, and started extension in the direction of arrow A in

FIG. 6. A

controller


134


having a reversing spool controls the direction of movement for the reciprocating cylinder


112


by powering either pneumatic line


162


or pneumatic line


164


. Supply manifold


128


supplies air under pressure through line


166


to controller


134


to supply line


162


to extend the reciprocating cylinder


112


and drive the pneumatic cylinder rod


158


in extension in the direction of arrow A. When reciprocating cylinder


112


is fully extended, the apparatus is at rest awaiting loading of a garment into the hanger by the operator. As the operator loads the garment into the hanger, the outside edges of the garment engage triggers


116


(


a


) and


116


(


b


), which actuate pneumatic valves


117




a


and


117




b


. Trigger control valves


117




a


and


117




b


are mounted in series so that both must be actuated before the circuit is reversed. The trigger circuit is powered through supply line


172


(


a


) and upon actuation, the trigger control valves power supply line


172


to activate the controller


134


to shift the spool of the control valve


134


in the opposite direction. As supply the trigger control valves energize line


172


, the spool valve of controller


134


shifts to the opposite position from the position illustrated in FIG.


6


. When shifted, pneumatic line


164


will be pressurized which will then drive the reciprocating cylinder


112


and cylinder rod


158


in retraction, or in the opposite direction of arrow A, thereby retracting the push plate


106


from the stop position. As indicated above, as the cylinder rod


158


and control engagement cam


125


are retracted, the ram cylinder pneumatic valve


124


reverts to the position illustrated in

FIG. 6

, and the pinch grip cylinders


114


(


a


) and


114


(


b


) are driven upwardly, releasing the pinch grips to engage the garment.




Reciprocating cylinder


112


and cylinder rod


158


are then powered retraction, in the direction opposite the arrow A until the reversing cam


127


engages reversing forward motion control valve


126


. When forward motion control valve


126


is actuated, air pressure from control line


174


is then used to energize control circuit


176


which will then drive the spool valve in controller


134


in the opposite direction, reversing the airflow to the reciprocating cylinder


112


. This initiates a new cycle of operation, as the push plate


106


engages a new hanger from magazines


102




a


,


102




b


, and advances it to the stop position, to actuate ram cylinder pneumatic valve


124


. Actuation of ram cylinder pneumatic valve


124


stops extension of the reciprocating cylinder as described earlier, and powers pneumatic line


180


to power the pinch grip cylinders


114


,


114




b


to drive the rams


122




a


,


122




b


downwardly and open the hanger pinch grips


90




a


,


90




b.






With the pinch grips


101


open and the hanger secured in the stop position, the operator can insert a garment into the now open pinch grips


101


. As illustrated in

FIG. 3

proximately located to the open pinch grips are triggering devices


116


. The triggering devices


116




a


,


116




b


are actuated by the outer edges of the garment when the operator places the garment in the pinch grip clips


90




a


,


90




b


. In the preferred embodiment of the present invention, the triggers


116




a


,


116




b


are located immediately outside each of the pinch grips. The operator picks up a garment to be hung from the hanger


110


, typically a pair of slacks or a skirt, and pulls the waistband taut between her hands. The taut waistband is then inserted into the pinch grips


101


with both hands on the outside of the device, whereby the triggers


116


are actuated by the portions of the garment that extends beyond the outer edges of the hanger. The device also employs a sloping garment guide


94




a


which joins main base


94


to assist the operator and guide the garment waist band into pinch grips


90




a


,


90




b.






The placement of the triggers


116


to each side of the location where the garments are inserted provides an added safety feature for the device. Since there is no opportunity for an operator to inadvertently injure herself while operating the device. This is a result of the dual trigger mechanism, which necessitates that the operator grip the garment at its outer edges, and pull it taut for insertion. The operator must pull the garment outward at its ends with both hands to insure that there is no sagging of the garment between the grips. Thus, both of the triggers are tripped while the garment is in the proximate location after it is inserted into the pinch grips. As a result of requiring the operator to use both hands to hold the garment to trip the triggers, there is a reduced likelihood that the operator can inadvertently injure himself or herself. This increased safety is due largely to the fact that their hands are holding the ends of the garment, and therefore cannot inadvertently engage any of the reciprocating elements of the device.




Upon triggering, two actions take place. Instantly, the pinch grip cylinder rams


122


(


a


) and


122


(


b


) is retracted. The retraction allows the spring force of each pinch grip


90


to return to its normally closed position, thereby securely gripping the garment there between. This permits the operator to lift the hanger and garment combination off of the main base


94


, and place the combination elsewhere for further processing. Secondly, the push plate


106


begins moving in a direction away from operator. As the push plate


106


passes the magazine


102


, a new hanger


100


drops to the main base


94


and the process begins a new.




While several embodiments and variations of the present invention for a pinch grip hanger mechanism are described in detail herein, it should be apparent that the disclosure and teachings of the present invention will suggest many alternative designs to those skilled in the art.



Claims
  • 1. A pinch grip hanger mechanism for automatically dispensing pinch grip hangers and opening pinch grips to enable insertion of a garment by an operator, the mechanism comprising:a magazine for holding a plurality of pinch grip hangers, each hanger having a support bar and first and second pinch grips; a push plate which engages a single hanger as it is dispensed from the magazine, said push plate reciprocating from a hanger feed position to a hanger stop position in a first direction; first and second pinch grip cylinders for projecting first and second rams onto the first and second pinch grips of the hanger and opening said hanger pinch grips, the first and second pinch grip cylinders being actuated at the hanger stop position; and a triggering means for automatically retracting the first and second pinch grip cylinders following insertion of a garment by the operator.
  • 2. A pinch grip mechanism as claimed in claim 1, which further includes a push plate cylinder to reciprocate the push plate in said first direction to said hanger stop position.
  • 3. A pinch grip mechanism as claimed in claim 1, which further comprises a size cap magazine, said size cap magazine dispensing a single size cap with each movement of the push plate in said first direction.
  • 4. A pinch grip hanger mechanism as claimed in claim 3, wherein the push plate further comprises a means for attaching the size cap to the hanger.
  • 5. A pinch grip hanger mechanism as claimed in claim 4, wherein said mechanism further includes a hanger stop, to stop movement of the hanger in a first direction at said hanger stop position.
  • 6. A pinch grip hanger mechanism as claimed in claim 1, wherein the push plate is actuated by a control circuit which enables automatic hanger feed to the operator following removal of a garment and hanger from the mechanism.
  • 7. A pinch grip hanger mechanism as claimed in claim 1, wherein said push plate defines a cut-out portion for a hook of the pinch grip hanger so that pressure is applied to the support bar of said hanger when moving the hanger in said first direction.
  • 8. A pinch grip hanger mechanism as claimed in claim 1, wherein said triggering means includes first and second garment actuated triggers located proximately to the pinch grip cylinders, said triggering means being actuated when the operator places the garment in the pinch grips of the hanger.
  • 9. A pinch grip hanger mechanism as claimed in claim 8, wherein said mechanism further includes a control circuit for enabling the retraction of the pinch grip cylinder rams, the closing of the pinch grips, and the initiation of movement of the push plate in a second direction when said trigger means are actuated.
  • 10. A pinch grip hanger mechanism as claimed in claim 9, wherein said control circuit automatically reverses the push plate cylinder when it engages a retraction stop switch.
  • 11. A pinch grip hanger mechanism as claimed in claim 9, wherein said control circuit automatically pauses the push plate cylinder when it engages an extension stop switch at said hanger stop position.
  • 12. A pinch grip hanger mechanism as claimed in claim 9 in which said first and second pinch grip cylinders are mounted on either side of an axis of reciprocation for said push plate, and said trigger means includes first and second triggers positioned proximate to said first and second pinch grip cylinders and external thereto with respect to said axis.
  • 13. A pinch grip hanger mechanism as claimed in claim 8 in which said mechanism includes a pneumatic push plate cylinder to reciprocate said push plate and a pneumatic control circuit.
  • 14. A pinch grip hanger mechanism as claimed in claim 13 in which said control circuit includes a reversible spool valve to reverse the movement of the pneumatic push plate cylinder when said trigger means is actuated.
  • 15. A pinch grip hanger mechanism as claimed in claim 1 in which movement of said push plate in said first direction defines a centerline axis for the mechanism, with said magazine formed of two symmetrically spaced towers, said mechanism further including a bracket to adjustably mount said spaced towers and said first and second pinch grip cylinders a plurality of defined distances from said centerline axis to accommodate a plurality of hanger sizes.
  • 16. A pinch grip hanger mechanism as claimed in claim 1 in which movement of said push plate in said first direction defines a centerline axis for the mechanism, with said magazine formed of two symmetrically spaced towers, said mechanism further including a bracket to adjustably mount said spaced towers and said first and second pinch grip cylinders a plurality of defined distances from said centerline axis to accommodate a plurality of hanger sizes.
  • 17. A pinch grip hanger mechanism for automatically dispensing pinch grip hangers and opening pinch grips to enable insertion of a garment by an operator, the mechanism comprising:a magazine for holding a plurality of pinch grip hangers, each hanger having a support bar and first and second pinch grips; a push plate which engages a single hanger as it is dispensed from the magazine, said push plate reciprocating from a hanger feed position to a hanger stop position in a first direction, and from said hanger stop position to a hanger feed position in a second direction; first and second pinch grip cylinders for projecting first and second rams onto the first and second pinch grips of the hanger and opening said hanger pinch grips, the first and second pinch grip cylinders being actuated by a pneumatic control switch, said control switch engaged by a stop mounted on said push plate when the push plate reaches the hanger stop position; and a triggering means for automatically retracting the first and second pinch grip cylinders and reciprocating said push plate to the hanger feed position following insertion of a garment by the operator to enable automatic hanger feed to an operator following removal of the garment and hanger from the mechanism.
  • 18. A pinch grip hanger mechanism as claimed in claim 17, wherein said triggering means includes first and second garment actuated triggers located proximately to the pinch grip cylinders, said triggering means being actuated when the operator places the garment in the pinch grips of the hanger.
  • 19. A pinch grip hanger mechanism as claimed in claim 18 in which said first and second pinch grip cylinders are mounted on either side of an axis of reciprocation for said push plate, and said triggering means includes first and second triggers positioned proximate to said first and second pinch grip cylinders and external thereto with respect to said axis of reciprocation.
  • 20. A pinch grip hanger mechanism as claimed in claim 17 in which said mechanism includes a pneumatic push plate cylinder to reciprocate said push plate and a pneumatic control circuit.
US Referenced Citations (61)
Number Name Date Kind
670027 Malmberg Mar 1901 A
2487445 Johnson Nov 1949 A
2496531 Gray Feb 1950 A
3406883 Crane Oct 1968 A
3550784 Batts et al. Dec 1970 A
3698043 Batts Oct 1972 A
3745616 Batts Jul 1973 A
3767092 Garrison Oct 1973 A
3824671 Watkin Jul 1974 A
3859710 Batts et al. Jan 1975 A
3923213 George et al. Dec 1975 A
3946915 Crane Mar 1976 A
3973705 Erthein Aug 1976 A
4009807 Coon Mar 1977 A
4023721 Erthein May 1977 A
4115940 Phillips Sep 1978 A
4157782 Mainetti Jun 1979 A
4169549 Takagi Oct 1979 A
4187967 Garrison Feb 1980 A
4192441 Batts Mar 1980 A
4194274 Garrison Mar 1980 A
4209879 Paajanen Jul 1980 A
4231500 Mainetti Nov 1980 A
4295585 Garrison Oct 1981 A
4322902 Lenthall Apr 1982 A
4349127 Savard, Jr. Sep 1982 A
4355743 Erthein Oct 1982 A
4381599 Duester et al. May 1983 A
4383362 Graniero et al. May 1983 A
4395799 Batts Aug 1983 A
D271649 Batts et al. Dec 1983 S
4446996 Garrison May 1984 A
4565309 Batts et al. Jan 1986 A
4706347 Lindsay Nov 1987 A
4718581 Chiaramonte Jan 1988 A
4826056 Duester et al. May 1989 A
4871097 Blanchard et al. Oct 1989 A
4873878 Milton Oct 1989 A
5075935 Abdi Dec 1991 A
5082153 Duester et al. Jan 1992 A
5096101 Norman et al. Mar 1992 A
D332180 Marshall et al. Jan 1993 S
5199608 Zuckerman Apr 1993 A
5238159 Zuckerman Aug 1993 A
D341947 Marshall et al. Dec 1993 S
5267678 Zuckerman Dec 1993 A
5272806 Marshall et al. Dec 1993 A
5285566 Marshall et al. Feb 1994 A
5400932 Hollis Mar 1995 A
5507086 Marshall et al. Apr 1996 A
5516014 Garrison May 1996 A
5568685 Marshall et al. Oct 1996 A
5595331 Leistner Jan 1997 A
5604975 Marshall et al. Feb 1997 A
5785216 Gouldson et al. Jul 1998 A
5794363 Marshall et al. Aug 1998 A
6019261 Morgan et al. Feb 2000 A
6021933 Zuckerman Feb 2000 A
6202906 Zuckerman Mar 2001 B1
6260745 Gouldson et al. Jul 2001 B1
6421910 Marshall et al. Jul 2002 B1
Foreign Referenced Citations (6)
Number Date Country
2037995 Feb 1972 DE
0095353 Nov 1983 EP
0095353 Nov 1983 EP
0007246 Jan 1990 EP
2050296 Apr 1971 FR
WO 9009651 Aug 1990 WO