1. Field of the Invention
This invention relates generally to hot rolling mills of the type producing bar and rod products, and is concerned in particular with improvements in the pinch roll units and associated controls employed to propel and/or retard the movement of such products at various places along the mill pass line.
2. The Prior Art
Pinch roll units are conventionally employed in rod mills to propel smaller diameter products through water boxes, and to propel larger diameter products through the laying heads. Alternatively, pinch roll units can be employed to retard and brake the movement of bar products being directed to cooling beds, and to prevent the tail ends of rod products from accelerating after they leave the last mill stand and before they arrive at the laying heads.
Pinch roll closure must be precisely timed to achieve the desired function, and the pinching force and torque exerted by the pinch rolls must be carefully controlled and coordinated to avoid marking the product. Marking can result from excessive pinching force, or by an imbalance of pinching force and driving torque resulting in slippage of the rolls against the product surface.
Conventional pinch roll units employ electric motors to drive the pinch rolls, and pneumatically driven linear actuators to open and close the pinch rolls. The latter have proven to be problematical due to fluctuations in the pressure of compressed air normally available in rolling mills, and the relatively slow reaction times attributable largely to solenoid valve dead times, cylinder closing times, and the stroke distance of the pistons. Such problems are particularly acute in high speed rolling environments, e.g., in rod mills where product delivery speeds now routinely exceed 100 m/sec.
The principal objective of the present invention is to eliminate or at least significantly minimize the above described problems by replacing the conventional pneumatically driven linear actuators with more reliable faster acting electrically driven closure mechanisms.
A pinch roll unit in accordance with the present invention operates either to propel or retard a product moving along the pass line of a rolling mill. The pinch roll unit includes a pair of levers mounted for rotation about parallel first axes. Roll shafts are carried by the levers. Each roll shaft is journalled for rotation about a second axis parallel to the first axis of its respective lever. Pinch rolls are carried by the roll shafts, and are spaced one from the other to define a gap for receiving the product being processed by the mill.
An electrically powered first motor is operable via intermediate linkage to rotate the levers in opposite directions about their first axes, and to thereby adjust the pinch rolls between open positions spaced from the product, and closed positions contacting and gripping the product therebetween. An electrically powered second motor rotatably drives the pinch rolls.
Advantageously, the first motor is a servo motor driving a disc crank for rotation about a third axis parallel to the first and second axes, with link members mechanically connecting the disc crank to the levers carrying the roll shafts.
Preferably, the pinch roll unit operates in conjunction with a detector, e.g., a hot metal detector, which generates a signal indicative of the presence of the product at a location along the pass line preceding the gap defined by the pinch rolls. A control system operates in response to the detector signal to operate the first motor precisely and to adjust the pinch rolls between their open and closed positions. The control system is also preferably operable to control the pressure exerted by the pinch rolls on the product. Advantageously, this pressure control is achieved by varying the torque exerted by the first motor.
These and other features and advantages of the present invention will now be described in greater detail with reference to the accompanying drawings, wherein:
With reference initially to
Pinch roll units 24 and 26 in accordance with the present invention are positioned along the mill pass line PL. Pinch roll unit 24 serves mainly in a driving mode to propel the product forwardly and to insure its passage through the last water box 16. Pinch roll unit 26 operates in either a breaking mode to slow the tail ends of smaller diameter products, which exhibit a tendency to speed up after they leave the finishing block 10, in a driving mode to push larger diameter slower moving products through the laying head 18.
With reference additionally to
An electrically powered first motor 36 operates via a planetary gear unit 38 to rotate a disc crank 40 about a third axis A3 parallel to the first and second axes A1, A2. Link members 42 are pivotally connected at opposite ends as at 44 to the disc crank 40 and as at 46 respectively to ears projecting from the levers 30a, 30b.
The disc crank 40 and link members 42 serve as a linkage for mechanically coupling the motor 36 and its gear unit 38 to the levers 30a, 30b, with the motor being operable via that linkage to rotate the levers about their respective first axes A1 and to thereby adjust the pinch rolls 34 between open positions spaced from a product moving along the mill pass line, and closed positions contacting and gripping the product.
The roll shafts 32a, 32b are provided with toothed segments 48 meshing with intermeshed drive gears 50a, 50b carried on drive shafts 52a, 52b. Drive shaft 52a is coupled as at 54 to an electrically powered second motor 56. Motor 56 serves as the means for driving the pinch rolls 34.
With reference additionally to
The signals generated by the hot metal detectors are indicative of the passage of front and tail ends at their respective locations along the pass line.
If the product size has not changed (Step 74), the system then moves the pinch rolls to the previously determined pre-touch position (Step 90). The system then awaits the arrival of the front end at HMD-2 (Step 92), after which the current limit for the servo motor 36 is set (Step 94), and the servo motor is energized to rapidly move the pinch rolls 34 from their pre-touch position into contact with the product followed by a current increase to the preset limit (Step 96). The system then cycles through the remainder of steps 84 to 88.
It will be understood by those skilled in the art that the similar routines are provided for pinching the tail ends of products, or when circumstances dictate, for pinching the entire product length.
The present invention provides numerous advantages over pneumatically actuated pinch roll units and control systems currently being employed. For example, the fast reaction times of the servo motors 36 makes it possible to locate the HMD-2 detectors close to the pinch roll units and to pinch the product within a meter of the head end passing through the pinch roll units. By contrast, when employing the slower reacting pneumatically actuated systems, the hot metal detectors must be positioned well in advance of the pinch roll units, usually before the finishing block 10. The torque limiting capabilities of the servo motors 36 and the speed controls of the drive motors 56 can be electronically coupled to properly balance pinch roll torque and pinching force during product acceleration and deceleration, thus avoiding surface marking of the product, Pre-touch positions of the pinch rolls can be memorized and used repeatedly for the same product sizes The electrically driven system for effecting pinching sequences is more rigid than the conventional pneumatically controlled systems, which, because of the compressibility of air, suffer from uncontrollable variations in pinching force as product dimensions change.
Number | Name | Date | Kind |
---|---|---|---|
3014628 | Littlehale | Dec 1961 | A |
3543555 | Baumann et al. | Dec 1970 | A |
3628594 | Reinfeld et al. | Dec 1971 | A |
3700379 | Robertson | Oct 1972 | A |
3776014 | Artz et al. | Dec 1973 | A |
4156453 | Scheinecker | May 1979 | A |
4280552 | Bayer et al. | Jul 1981 | A |
4283930 | Hasegawa et al. | Aug 1981 | A |
4388816 | Ferket et al. | Jun 1983 | A |
4413494 | Gilvar et al. | Nov 1983 | A |
4559990 | Greilinger et al. | Dec 1985 | A |
4635861 | Resch | Jan 1987 | A |