The present disclosure relates generally to the field of dispensing apparatuses, and more particularly to a pinch roller for a dispensing apparatus for sheet products.
Dispensers for sheet products are known in the art and are available with a wide variety of designs. Typically, dispensers have a drive roller, a pinch roller, and a roll of sheet product. The drive roller and pinch roller together form a nip through which the sheet product passes during dispensing.
One problem with this configuration results when water is present in the dispenser, such as when water is splashed into the dispenser through the dispensing chute. Any combination of the sheet product, the drive roller, and the pinch roller may become wet. In such a case, the sheet product may adhere to the pinch roller or become wrapped around the pinch roller, impeding the dispenser from dispensing properly. A need exists for a dispenser, and more particularly a pinch roller for a dispenser, that addresses this deficiency.
A pinch roller assembly for a sheet product dispenser includes a roller body and a plurality of clips. The roller body includes a plurality of grooves. The roller body is rotatably associated with the plurality of clips, each clip being disposed in one of the plurality of grooves.
A dispenser for dispensing sheet product includes a housing, a drive roller, and a pinch roller assembly. Together the drive roller and the pinch roller assembly define a nip configured to receive the sheet product. The pinch roller assembly includes a roller body and a plurality of clips. The roller body has a plurality of grooves. The roller body is rotatably associated with the plurality of clips, each clip being disposed in one of the plurality of grooves.
In embodiments, the pinch roller 104 may be an embodiment of a pinch roller assembly described herein, which is configured to reduce adherence of the dispensed product to the dispensing rollers during dispensing. It should be noted that
Each clip 210 has a hook portion 212 and a body portion 214. The hook portion 212 mates with the roller body 202, while the body portion 214 extends away from the roller body 202 in a radially outward direction. The hook portion 212 has a maximum outer diameter that is smaller than or approximately equal to a maximum outer diameter of the roller body 202, so that as the roller body 202 rotates during dispensing, the hook portion 212 does not impede the roller body 202 from engaging the drive roller to urge the sheet product towards the dispensing chute. The body portion 214 extends beyond the roller body 202 and abuts a portion of the dispenser, so that the clips 210 remain stationary as the roller body 202 rotates. Because the body portion 214 extends beyond the roller body 202, the clips 210 reduce or prevent sheet product that may have adhered to the roller body 202 from wrapping around the roller body 202 as it rotates.
The number and placement of clips 210 along the roller body 202 are selected to reduce or prevent sheet product from adhering to and wrapping about the roller body 202 during dispensing. In the illustrated embodiment, six clips 210 are disposed along the length of the roller body 202 in spaced positions. However, other numbers of clips 210 may be employed depending on the length of the roller body 200, such as between three and eight clips. The number of clips 210 may be limited such that the clips 210 do not interfere with or inhibit the function of the pinch roller assembly 200. For example, the combined surface area of the clips 210 may constitute approximately twenty percent or less of the surface area of the roller body 202. Because edges of the sheet product may be prone to adhering to edges of the roller body 202, some clips 210 may be disposed adjacent to ends of the roller body 202, such as about one-half to one inch from each end of the roller body 202. However, other configurations are possible.
The clips 310 are sized to fit within the grooves 304 such that the roller body 302 can rotate freely with reference to the clips 310. For example, the dimensions of the clip 310 may be selected to allow the clips 310 to slip with reference to the roller body 302 as it rotates, without the clips 310 disengaging or separating from the roller body 302. In embodiments, the grooves 304 of the roller body 302 are designed receive the clips 310. The grooves 304 have a width W, and the clips 310 have a width w that is less than the width W of the grooves 304.
In embodiments, the roller body 302 may be formed with an absence of material at discrete locations along its length to form the grooves 304, such as by molding. In other embodiments, the roller body 302 may be formed with a solid construction and a portion of the material may be removed to form the grooves 304. In yet other embodiments, the roller body 302 may be constructed from multiple pieces that are subsequently connected, as discussed in more detail with reference to
The clip 410 has a width with a value of w, and in embodiments, the width w is sized to permit the hook portion 412 to loosely fit within the grooves on the roller body. The hook portion 412 has an inner diameter 416 with a value of Di and an opening 418 with a value of d, and in embodiments, the opening 418 is suitably sized so as to allow the hook portion 412 to snap over the inner core of the roller body in a snap-fit manner, and the inner diameter 416 is sized so as to loosely fit over the inner core of the roller body. As used herein, the term “loosely fit” means a fit that allows unrestrained rotational movement between the roller body and the clip 410 without excessive lateral movement of the clip 410 within the groove that would be contrary to the purpose described and disclosed herein.
In embodiments, the clip 410 has a rib 422 that extends outwardly from the body portion 414. Along an upper region of the hook portion 412, the rib 422 extends out from the clip 410 no farther than the outer diameter of the roller body. The rib 422 progressively increases in extension from the clip 410 around the perimeter of the hook portion 412, and toward the body portion 414 the rib 422 extends beyond the outer diameter of the roller body by a distance h.
In embodiments, the roller body outer surface has a diameter Do in the range of about 0.7 to 0.8 inches, the roller body inner core has a diameter Dc in the range of about 0.4 to about 0.6 inches, and the clip hook portion has an inner diameter Di that sized based on the diameter Dc of the roller body inner core so that the parts of the assembly loosely fit together taking tolerances into consideration. For example, in embodiments in which the roller body inner core has a diameter Dc of about 0.50 inches, the clip hook portion has an inner diameter Di that may be in the range of about 0.51 to 0.53 inches. In addition, the dimension d of the opening into the clip hook portion is suitably sized based on the diameter Dc of the roller body inner core so as to allow the hook portion 402 to snap over the roller body inner core. For example, in embodiments in which the diameter Dc of the inner core is 0.50 inches, the dimension d of the opening into the clip may be between about 0.35 to 0.37 inches.
In embodiments, the width W of the groove on the roller body has a value ranging from about 0.3 to 0.4 inches, and the width w of the clip is sized based on the width W of the groove so that the clip fits within the groove. For example, in embodiments in which the groove has a width W of about 0.36 inches, the clip may have a width w in the range of about 0.30 to about 0.35 inches. In one particular embodiment, Do is about 0.740 inches, Dc is about 0.500 inches, Di is about 0.524 inches, d is about 0.364 inches, W is about 0.360 inches, and w is about 0.310 inches. However, other dimensions are within the scope of the present disclosure.
As described above, the rib 722 extends outward from the clip 710, such as by the distance h along the bottom end 720 of the clip 710. If sheet product becomes wet and adheres to the roller body 700 during dispensing, the ramp-shaped rib 722, which is stationary relative the rotating roller body 700 during a dispensing action, separates the wet sheet product from the roller body 700 thereby preventing the sheet product from wrapping around the roller body 700 and jamming in the dispenser.
In embodiments, the pinch roller assembly is suitable for use with existing dispensers having a variety of configurations. For example, the roller body 700 may have a length and an outer diameter that is substantially the same as the pinch roller of the existing dispenser, and the clips 710 may be designed to engage the chassis 730 of the existing dispenser. Accordingly, the pinch roller of an existing dispenser can be replaced with the pinch roller assembly having the roller body 700 and clips 710, to reduce the propensity of wet sheet product to adhere to the roller body as it rotates.
In embodiments, the dispenser may be a water resistant style of dispenser that is designed for use in environments in which the dispenser is exposed to water. For example, many industrial environments require periodic and thorough cleaning that can include the use of a hose to wash down the entire environment, including the walls to which a sheet product dispenser may be attached. Accordingly, water resistant dispenser designs include various elements that are used to prevent the sheet product from becoming wet. Such elements include, but are not limited to, a closeable dispensing hatch and one or more rubber gaskets to ensure water stays out of the dispenser during a wash down. While currently available water resistant dispensers include elements to prevent the sheet product from becoming wet during a wash down, the sheet product of the dispensers may still become wet during normal use, i.e., when the dispensing hatch is open. Accordingly, to overcome the problem of wet sheet product adhering to the pinch roller, a pinch roller with clips, as described in detail above, can be used with currently available water resistant dispensers.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best or only mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
This application claims priority to U.S. Provisional Patent Application No. 61/467,247, filed Mar. 24, 2011, which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61467247 | Mar 2011 | US |