1. Field of the Invention
The present invention relates to a socket for removably mounting an electronic device. More specifically, the present invention relates to a pinch-style support contact configured to establish a reference seating plane for an integrated circuit (IC) package within the socket, as well as provide electrical communication for the IC package and the socket.
2. State of the Art
Testing a semiconductor die often involves establishing an electrical connection between testing equipment and the integrated circuitry of the die. Testing may be performed on an unpackaged semiconductor die that has been singulated from a semiconductor wafer, on a section of semiconductor dice that are still part of the wafer, or on all of the semiconductor dice on a wafer. Moreover, a bare semiconductor die that has undergone packaging may also be tested. One example of such a packaged semiconductor die is a so-called “flip-chip,” wherein discrete conductive elements, such as solder balls, are attached directly to or formed on the bond pads or redistributed bond pads at the ends of electrical traces formed on the active surface of the semiconductor die. The die is then “flipped,” or mounted face down, so that the solder balls may connect with contact members of another device, such as terminal pads of a carrier substrate. Another example is a “chip scale package,” which includes a die along with one or more package elements, such as encapsulating material in the form of thin protective coatings formed of a dielectric material bonded to the active surface, sides and back side of the semiconductor die; in addition, solder balls may be attached to or formed on ends of electrical traces on the active surface of the semiconductor die or directly to the semiconductor die's bond pads through openings in the encapsulating material. A Ball Grid Array (BGA) serves as yet another example that involves even more packaging: the semiconductor die is wire bonded to terminal pads on the top side of an interposer substrate and encapsulated, and solder balls are bonded to electrical traces on the bottom side of the substrate that are electrically connected to the terminal pads.
An electronic device to be tested will hereinafter be referred to as an integrated circuit package, or IC package, regardless of the singulation or packaging state of the semiconductor die or dice that form all or part of the IC package. One method of testing the IC package involves placing the IC package into a socket, which comprises a body with apertures that span through the body. These apertures house contact members that are aligned with electrical terminals of the IC package. For purposes of explanation only, it will be assumed that the terminals of the IC package are solder balls or other discrete conductive elements that protrude from the IC package. Often, the socket includes cover that, when closed, adjusts a slider to actuate arms of the contact members and engage the solder balls of the IC package. Contact members comprising arms which may open and close about solder balls may be referred to as pinch-style contacts. Once the IC package has been inserted, the socket may then be plugged into a printed circuit board (PCB) or other carrier substrate.
One example of a conventional socket with pinch-style contacts used in burn-in tests for electronic packages having BGA terminals is described in U.S. Pat. No. 6,350,138 issued to Atobe et al. (hereinafter “the '138 patent”), on Feb. 26, 2002. The '138 patent discloses, as shown in
The depicted socket 1 comprises a base 2 as the main socket body, a cover 3, a slider 4 mounted on the base 2, which serves as a contact part switching member, and an adaptor 5 mounted on the slider 4. The base 2 may be attached to a PCB (not shown) for testing the BGA package 9. The cover 3 is formed in the shape of a square frame with an opening at the center for the purpose of inserting the BGA package 9. The base 2 and cover 3 are relatively movable toward and away from each other while maintaining a mutually parallel state. Contact members 6 are provided at positions which correspond to solder balls 11 provided on the lower side of the BGA package 9. Each contact member 6 includes a pair of arms 6a, 6b for engaging a solderball 11. The slider 4 includes a lattice-like partition wall capable of moving in a vertical direction, thus engaging the contact members 6, causing the pair of arms of each contact member to open or close. A slider 4 capable of moving in a horizontal direction to engage the contact members 6 is also known in the art. The terminal portions 6c of the contact members 6 provide attachment to the PCB (not shown).
The contact members 6 pass through the base 2 and apertures 4b of the slider 4. The contact arms 6a, 6b include tips 7, located within substantially the same plane. The seating part 5a supporting the BGA package 9 creates a seating plane, the plane of a bottom surface 8 of the IC package body, or substrate 10. One difficulty in the construction of the socket 1 is ensuring that the plane of the contact arm tips 7 is parallel to the seating plane. In addition, the spacing of the plane of the contact arm tips 7 must be a proper distance from the seating plane to ensure reliable electrical connection, as described further hereinbelow. The seating part 5a and the base 2 conventionally comprise plastic, and tolerances for forming plastic parts are typically high relative to the tolerances for the conventional stamping and stitching processes for forming contact members 6. Tolerance stacking, or accumulation, of tolerances of a plurality of components may add to the error introduced by the individual tolerances. Nonplanarities in the seating part 5a, as well as nonplanarities in the IC package substrate 10, for example, bowing, may further contribute to error in the seating plane, and therefore error in the spacing between the seating plane and the plane of the contact arm tips 7.
One example of a problem resulting from improper spacing between the plane of the contact arm tips 7 of a socket 1 and the seating plane of the BGA package 9 is that a trace (not shown) on a bottom surface 8 of the IC package substrate 10 may interfere with the movement of a contact arm 6a, 6b if the seating plane of the IC package is positioned too close to the plane of the contact arm tips 7. The trace may protrude from the bottom surface 8 of the IC package substrate 10. The contact arm tip 7 of a moving contact arm 6a or 6b may intersect the trace, preventing further movement, and therefore, contact with the solder ball 11. If the contact member touches or rubs against the BGA package substrate 10, especially while moving to make contact with the solder ball 11, the bottom surface 8 of the IC package substrate 10 may be scratched, which may result in unreliability of the BGA package 9 in later service due to entry of moisture or other contaminants or undetected damage to circuitry, since scratches may damage the passivation layer on the IC package substrate 10, or may expose the underlying traces and cause shorts.
Another problem with spacing error results from the contact arm tips 7 touching the BGA package 9. The IC package substrate 10 may expand, for example during an increase in temperature, such as burn-in testing. Contact arm tips 7 touching the IC package substrate 10 when the IC package substrate 10 expands may move with the expansion of the IC package substrate 10, causing the contact arms 6a, 6b to pull apart and lose reliable electrical communication with the solder ball 11.
A third concern in relation to BGA package test sockets is that the IC package may not be held in the socket securely enough to maintain a valid testing process through sufficient continuous electrical communication between the socket and the IC package, yet not so securely held that the IC package or its electrical connections are damaged, particularly during removal of the IC package from the test socket.
In view of the foregoing, it appears that a socket with an improved seating plane for an IC package and a method of forming electrical connection with improved accuracy between a socket and an IC package would be useful.
The present invention, in a number of exemplary embodiments, includes a socket employing a contact member in the form of a pinch-style support contact configured to establish a reference seating plane for an IC package within the socket as well as provide electrical communication between terminals of the IC package and the socket. By using an array of the pinch-style support contacts, the IC package may be securely held within the socket with increased accuracy in comparison to conventional sockets. As used herein, the term “terminal” includes any discrete conductive element protruding from an IC package, such as, without limitation, a solder ball, a metal ball, bump, pin or post, a conductive or conductor-filled polymer bump, stud or pillar, or a conductive-coated dielectric structure.
In accordance with one aspect of the present invention, a socket includes a plurality of pinch-style support contacts. Each pinch-style support contact comprises a stationary contact arm and a movable contact arm extending from a terminal portion. The stationary contact arm and the movable contact arm each include a contact surface configured to contact a terminal of the IC package. The terminal portion of each pinch-style support contact may be in electrical communication with the stationary contact arm and the movable contact arm, and configured for attachment to a PCB or other carrier substrate. The stationary contact arm includes an IC package support surface and extends distally beyond the height of the movable contact arm.
The socket may also include a slider or other actuation structure positioned and configured to movably, selectively engage each movable contact arm of the plurality of pinch-style support contacts to effect lateral movement thereof with respect to its associated, stationary contact arm. The contact surface of the movable contact arm may include, for example, a beak-like protrusion. The contact surface of the stationary contact arm may, for example, be substantially planar. The stationary contact arm and the movable contact arm may be configured for symmetrical or, alternatively, asymmetrical engagement with a terminal of the IC package. The movable contact arm and the stationary contact arm are fixed to the terminal portion, and at least the movable contact arm may, in one exemplary embodiment, be formed of a material resilient or elastic in bending to cause it to return toward a neutral, or unbiased, position when out of engagement with the slider or other actuation structure.
A socket according to the present invention may employ a plurality of pinch-style support contacts arranged in a two-dimensional array in a pattern and spacing or pitch mirrored to that of an array of terminals of an IC package. Another embodiment of a socket of the present invention also comprises an array of contact members, selected contact members being pinch-style support contacts of the present invention and the balance of the contact members comprising conventionally configured contact members. In either embodiment, the stationary contact arms of each pinch-style support may be configured to support an IC package and establish a reference seating plane.
Yet another embodiment of a socket of the present invention may employ a plurality of pinch-style support contacts arranged in a two-dimensional array in a pattern and spacing or pitch mirrored to that of an array of terminals of an IC package in addition to a supplemental plurality of pinch-style support contacts. The plurality of pinch-style contacts and the supplemental plurality of pinch-style contacts together form a two-dimensional array having dimensions greater than those of the array of terminals of the IC package. Alternatively, the plurality of pinch-style contacts and the supplemental plurality of pinch-style support contacts may be arranged in a two-dimensional array in a pattern and spacing or pitch mirrored to that of a plurality of arrays of terminals of a like plurality of IC packages.
One embodiment of a method according to the present invention of enabling electrical communication between an IC package and a socket having a plurality of pinch-style support contacts includes moving movable contact arms of the plurality of pinch-style support contacts away from their associated stationary contact arms, supporting the IC package on stationary contact arms of the plurality of pinch-style support contacts, and causing the movable contact arms to move toward their associated stationary contact arms to engage terminals of the IC package. Movable contact arms of the plurality of pinch-style support contacts may be resiliently biased toward the stationary contact arms to contact terminals of the IC package or positively moved toward the stationary contact arms. Electrical communication with the terminals is established through the stationary contact arm and the movable contact arm of the pinch-style support contacts.
Other features and advantages of the present invention will become apparent to those of skill in the art through consideration of the ensuing description, the accompanying drawings, and the appended claims.
In the drawings, which illustrate what is currently considered to be the best mode for carrying out the invention:
Generally, the present invention contemplates that a socket for removably mounting an IC package may include pinch-style support contacts which establish a reference seating plane for the IC package. A stationary arm of each pinch-style support contact may be used to support the IC package rather than the seating part of a conventional socket. Such a configuration may provide a socket with more consistent and reliable interconnect conditions. While the present invention is described herein in the context of a test socket, it is not so limited.
In accordance with one aspect of the present invention, as depicted in
The stationary contact arm 120 and the movable contact arm 130 of socket 100 extend upwardly from a dielectric base member 105 thereof. The terminal portion 140 of each pinch-style support contact 110 may extend downwardly from the base member 105 to provide attachment for socket 100 to a PCB (not shown) or other carrier substrate. A slider 170 carried by the socket 100 may be used to initiate lateral movement of each movable contact arm 130 with respect to each stationary contact arm 120 to open and close each pinch-style support contact 110. This enables an IC package to be removably mounted, that is, inserted, secured to and then removed from the socket 100. The slider 170 may comprise a lattice-like partition wall mounted for movement in base member 105 in a horizontal or vertical direction. The movement of the slider 170 is conventionally actuated by an external force, for example, if a cover (not shown) of the socket 100 is pressed down.
The movable contact arm 130 may be actuated to a closed position as depicted in
The present invention may be implemented using a slider 170 and movable contact arm 130 cooperatively configured to open and close each pinch-style support contact 110 in a variety of ways. For example, as described above, the movable contact arm 130 may be elastically deformed to the open position and returned by its elastic property to the closed position. Conversely, the movable contact arm 130 may be elastically deformed by slider contact and movement to the closed position and returned by its elastic property to the open position. Alternatively, the movable contact arm 130 may be positively biased by contact with slider 170 to both the open and the closed position. In such an instance, the movable contact arm 130 need not be of a resilient or elastic material and may be hinged or otherwise configured to be pivotable at its proximal end with respect to terminal portion 140. It is further understood that structure for effectuating lateral movement of the movable contact arm 130 need not be restricted to a horizontally or vertically movable slider. It is contemplated that any device configured for biasing the movable contact arm 130 may be employed in a socket of the present invention. For example, an eccentric cam placed proximate to movable contact arm 130 proximate a protrusion 115 and rotatable about a horizontal axis may be used to initiate movement of movable contact arm 130 toward and away from its associated stationary contact arm 120.
Returning to
Returning again to
The movable contact arm 130 may have a beak-like protrusion 200 to concentrate stress against, and provide good contact with, the terminal 160. The beak-like protrusion 200 may provide better contact by piercing any oxidation which may have formed on the surface of terminal 160. Any bond with terminal 160 which may cause the beak-like protrusion 200 thereto will likely be broken when the movable contact arm 130 is pulled away from the terminal 160. The slider 170 may be moved to engage the movable contact arm 130 to compel lateral movement thereof with respect to the stationary contact arm 130, and the beak-like protrusion 200 located at the distal tip of the movable contact arm 130 may be pulled away in an arc. The resulting twisting motion may help break the bond between a beak-like protrusion 200 and a terminal 160. The beak-like protrusion 200 may be located and oriented on movable contact arm 130 to contact the terminal 160 at the widest part of the terminal 160, that is, the portion of the terminal 160 where the diameter becomes the largest relative to planes parallel to the bottom surface 240 of the IC package 150. The beak-like protrusion 200 of the movable contact arm 130 is preferably positioned to contact the widest portion of a terminal 160 comprising a solder ball to avoid slippage of the movable contact arm 130 against the surface of terminal 160 or an unreliable contact therewith.
The nominal diameter or a range of diameters of the solder balls may be used to determine an optimum distance d, the difference in vertical protrusion of the stationary contact arm 120, and therefore the reference seating plane, over the movable contact arm 130 in a socket 100. An accurate reference seating plane may thus be useful to ensure that the solder balls are clamped at a desired location, for example, at the widest portion of each solder ball.
The stationary contact arm 120 and the movable contact arm 130 may be configured to symmetrically engage each terminal 160 of the IC package 150, as depicted in the right side view of
Alternatively, a stationary contact arm 120′ and its associated movable contact arm 130′ may be configured to asymmetrically engage a terminal 160′, as depicted in the plan side view
The present invention contemplates that there are many geometric configurations for the terminal portion 140 of the pinch-style support contact 110, which may provide a point of attachment for the socket to a PCB or other carrier substrate (not shown). By way of example, and not to limit the scope of the present invention, as pictured in
A socket may comprise a plurality of contact members in an array in mirrored pattern and pitch to an array of terminals of an IC package and may be dimensioned such that each terminal thereof is discretely connected to the socket in electrical communication sufficient to test the IC package. Each of the contact members of a socket may comprise pinch-style support contacts 110 of the present invention, as shown in
In addition, it will be understood that while an array of 16 contact members, including four pinch-style support contacts 610 is shown in
As will be appreciated by those of ordinary skill in the art, the present invention enables improved accuracy for forming electrical connection between a socket and an IC package. The features of the socket which are the most tightly controlled during socket manufacture, the contact arms, are used to establish a reference seating plane on which an IC package may be supported. The establishment of a reference seating plane provides accurate and sufficient vertical spacing or standoff between movable contact arms of the socket and the plane of the IC package. Accurate and sufficient vertical spacing or standoff removes the IC package from the potential for damaging shear contact with a movable contact arm which may compromise package integrity or electrical function, prevent damage to the IC package substrate and terminals, and provide more reliable electrical connection, thus overcoming previously experienced testing problems.
Although the foregoing description contains many specifics, these should not be construed as limiting the scope of the present invention, but merely as providing illustrations of some exemplary embodiments. Similarly, other embodiments of the invention may be devised which do not depart from the spirit or scope of the present invention. Features from different embodiments may be employed in combination. Moreover, the methods and devices described above are not limited to testing circumstances; rather, they could also be used for interconnect devices in permanent or semipermanent packaging. The scope of the invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions, and modifications to the invention, as disclosed herein, which fall within the meaning and scope of the claims are to be embraced thereby.
Number | Name | Date | Kind |
---|---|---|---|
5059135 | Matsuoka et al. | Oct 1991 | A |
5482471 | Mori et al. | Jan 1996 | A |
5578870 | Farnsworth et al. | Nov 1996 | A |
5611705 | Pfaff | Mar 1997 | A |
5690281 | Ikeya et al. | Nov 1997 | A |
5829988 | McMillan et al. | Nov 1998 | A |
RE36217 | Petersen | Jun 1999 | E |
6027355 | Ikeya | Feb 2000 | A |
6050836 | Tohyama | Apr 2000 | A |
6126467 | Ohashi | Oct 2000 | A |
6139348 | Fukunaga | Oct 2000 | A |
6168449 | Huang et al. | Jan 2001 | B1 |
6261114 | Shimada | Jul 2001 | B1 |
6280219 | Sano et al. | Aug 2001 | B1 |
6287127 | Himino et al. | Sep 2001 | B1 |
6345999 | Okuyama et al. | Feb 2002 | B1 |
6350138 | Atobe et al. | Feb 2002 | B1 |
6371783 | Ohashi et al. | Apr 2002 | B1 |
6402528 | Takahashi et al. | Jun 2002 | B1 |
6402537 | Ikeya | Jun 2002 | B1 |
6428337 | Ohshima et al. | Aug 2002 | B1 |
6471531 | Kanesashi | Oct 2002 | B1 |
6614247 | Ikeya et al. | Sep 2003 | B1 |
6666691 | Ikeya | Dec 2003 | B1 |
20030008544 | Nakano | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060046554 A1 | Mar 2006 | US |