Pinion clip for right angle linear cutter

Information

  • Patent Grant
  • 9113878
  • Patent Number
    9,113,878
  • Date Filed
    Thursday, August 11, 2011
    13 years ago
  • Date Issued
    Tuesday, August 25, 2015
    9 years ago
Abstract
Coupling assemblies are provided for maintaining a secure connection between surgical devices utilizing a shaft-and-pinion configuration and powered drive shafts. The coupling assemblies include a clip to be disposed without or within a pinion for receiving and securing a drive shaft member. The coupling assemblies are designed to maximize restriction of movement between the drive shaft and clip, but avoid impeding the rotational motion of a pinion.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to electro-mechanical surgical devices and/or systems. Specifically, the present disclosure relates to pinion clips for use in maintaining a secure connection in a pinion-and-shaft configuration of an electro-mechanical surgical device and/or system.


2. Background of Related Art


A number of surgical device manufacturers have developed product lines with proprietary drive systems for operating and/or manipulating the surgical device. In many instances, the drive system includes a drive shaft coupled to a pinion for driving, rotating, and/or articulating an end effector of the surgical device.


Many of the existing coupling configurations between the drive shaft and pinion suffer from too much freedom of movement between the shaft and pinion. As such, many existing coupling configurations have an adverse effect on both the efficiency and control of the electro-mechanical surgical devices.


In order to address the problem of movement between the drive shaft and pinion during operation, a need exists for a more secure assembly of an end effector of the electro-mechanical surgical device to the driving member of the electro-mechanical surgical device.


SUMMARY

The present disclosure relates to pinion clips for use in maintaining a secure connection in a pinion-and-shaft configuration of an electro-mechanical surgical device and/or system.


According to one embodiment of the present invention, a pinion clip for use in a drive shaft and pinion assembly is provided, wherein the pinion defines a longitudinal axis and having an internal bore. The pinion clip includes at least one arm, defining an arm axis, disposed along the longitudinal axis of the pinion and being configured to at least partially project into the internal bore of the pinion. The pinion clip further includes at least one base member, defining a base axis, oriented transverse to the longitudinal axis of the pinion. The pinion clip is positioned on the pinion such that the at least one arm intersects the diameter of the internal bore of the pinion.


The at least one arm may contain at least one goose-neck portion configured to engage a surface of a drive shaft inserted into the bore of the pinion.


The pinion clip may include a collar configured to attach the coupling clip to an outer circumference of the pinion. The collar may be substantially annular. The collar may include at least one deformed portion defining a flat. The collar may be configured for receipt in a receiving surface defined in an outer surface of the pinion. The collar may be a split collar defining opposed ends that project radially inward for engagement with at least one corresponding receiving surface defined in an outer surface of the pinion. The circumference of the collar may be non-continuous.


The pinion clip may further include at least one base post extending from a side edge of the back member in a direction transverse to a plane defined by the backspan, wherein the at least one base post extends beyond the diameter of the internal bore of the pinion when the coupling clip is connected to the pinion.


The pinion clip may contain an aperture for the receipt of a locking pin.


According to another aspect of the present disclosure, a pinion and pinion clip assembly configured for selective coupling with a rotatable drive shaft is provided. The pinion and pinion clip assembly includes a pinion being a substantially cylindrical member, the pinion having proximal and distal ends and defining a longitudinal axis and an internal bore; and a pinion clip configured for connection to the pinion, the pinion clip including at least one base member, defining a base axis, oriented transverse to the longitudinal axis of the pinion, and at least one arm extending from the base member, each arm defining an arm axis disposed at an angle relative to the base axis of the base member, wherein each arm is configured to at least partially project into the internal bore of the pinion. The pinion clip is positioned on the pinion such that the at least one arm intersects the diameter of the internal bore.


The pinion may include at least one pinion groove formed in an outer surface thereof and being configured to receive the at least one arm of the pinion clip.


The at least one arm may contain at least one goose-neck portion configured to project into the internal bore of the pinion.


The pinion clip may include a collar configured to attach the pinion clip to an outer circumference of the pinion. The collar may be substantially annular. The collar may include at least one deformed portion defining a flat.


The pinion may define a receiving surface in an outer surface thereof, and wherein the collar may be configured for disposition in the receiving surface defined in the outer surface of the pinion.


The pinion may define a receiving surface in an outer surface thereof. The collar may be a split collar defining opposed ends that project radially inward for engagement with the receiving surface defined in the outer surface of the pinion.


The pinion clip may further include at least one base post extending from a side edge of the base member in a direction transverse to a plane defined by the base member, wherein the at least one base post extends beyond a diameter of the internal bore of the pinion when the pinion clip is connected to the pinion.


The pinion clip may contain an aperture for the receipt of a locking pin.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a surgical device or end effector of the type driven by a shaft-and-pinion assembly.



FIG. 2 is an exploded perspective view of the surgical device of FIG. 1, illustrating the relative placement of the pinions within the surgical device.



FIG. 3 is a cross-sectional view of one embodiment of the pinion, with the pinion clip aligned for placement within the pinion and the insertion tool readied for application above the pinion clip.



FIG. 4A shows the embodiment of the pinion clip of FIG. 3 in cross-section and placed within a pinion before being secured.



FIG. 4B shows the pinion clip of FIG. 3 in cross-section and disposed within a pinion, and at the initial point of contact with the insertion tool, before the pinion clip is secured within the pinion.



FIG. 4C shows the pinion clip of FIG. 3 in cross-section subject to forces exerted by the insertion tool. The base posts are shown in a resultant deformed state and in contact with base post holes for receiving them.



FIG. 4D is a cross-sectional view of the pinion of FIG. 3, showing the final resting position of the pinion clip of that embodiment, with the base posts in secure attachment to the base post holes.



FIG. 5 is a cross-sectional view of the pinion clip of FIG. 3 secured within the pinion.



FIG. 6 is a top perspective view of the pinion clip of FIG. 3 secured within the pinion.



FIG. 7A is a perspective view of the pinion clip of FIG. 3, fully assembled with the pinion and drive shaft.



FIG. 7B is a perspective view of the pinion clip of FIG. 3, in full assembly and showing the placement of the pinion clip within the pinion in hidden view.



FIG. 8 is a perspective view of an embodiment of a pinion clip including a collar and receiving band, aligned for placement about the pinion.



FIG. 9 is a perspective view of the pinion clip of FIG. 8 during placement about the pinion.



FIG. 10 is a perspective view of the pinion clip of FIG. 8 in which a driving tool used to force the pinion clip to its final resting position about the pinion.



FIG. 11 is a perspective view of the pinion clip of FIG. 8, assembled with the pinion.



FIG. 12 is a perspective view of the pinion clip of FIG. 8, fully assembled with the pinion and drive shaft.



FIG. 13 is a perspective view of an embodiment of a pinion clip including a collar tab for surface engagement, aligned for placement on the pinion.



FIG. 14 is a perspective view of the pinion clip of FIG. 13, assembled on the pinion.



FIG. 15 is a perspective view of the pinion clip of FIG. 13, fully assembled with the pinion and drive shaft.



FIG. 16 is a cross-sectional view of an embodiment of a pinion clip in which the pinion clip is slotted for receiving a locking pin, the pinion clip and locking pin aligned for placement in the pinion.



FIG. 17 is a cross-sectional view of the pinion clip of FIG. 16, in which the pinion clip and locking pin are assembled with the pinion.



FIG. 18 is a perspective view of the pinion clip of FIG. 16, in which the pinion clip and locking pin are assembled with the pinion.



FIG. 19 is a perspective view of the pinion clip of FIG. 17, in which the pinion clip and locking pin are fully assembled with the pinion and drive shaft.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed pinion clips for use in electro-mechanical surgical devices are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views.


In most embodiments, a pinion clip is designed such that it is disposed without or within a pinion, and has structure for receiving a drive shaft or other drive member. Certain embodiments of the pinion clips of the present disclosure contain structure for securing the pinion clip within or without the drive or shaft member, such that movement of the drive shaft or member in an axial direction, as well as rotation, relative to a pinion, is inhibited.


Referring initially to FIG. 1, a surgical device or end effector, generally designated as 100, is shown and is configured to be capable of connection to powered, rotating drive shafts of an electro-mechanical power source (not shown). Surgical device 100 and the drive shafts are coupled to one another by a shaft-and-pinion assembly, wherein the drive shafts are inserted into pinions 110a and 110b, as seen in FIGS. 1 and 2. In use, the drive shafts (not shown) are securely engaged within the pinions 110a and 110b and when turned, actuate components disposed on or in the surgical device 100. It should be noted that pinion 110a is substantially similar to pinion 110b, and this will only be discussed herein to the extent necessary to describe the differences in construction/configuration/operation thereof.


Reference may be made to U.S. patent application Ser. No. 10/094,051 (U.S. Patent Publication No. 2003/0130677), filed on Mar. 8, 2002, entitled “Surgical Device”, the entire content of which is incorporated herein by reference, for a detailed discussion of the construction and operation of surgical device 100.


To enhance the secured connection of a drive shaft to a pinion 110a, 110b, pinion clips 120a and 120b are shown to be attached, connected to, or supported on pinions 110a and 110b, respectively. In embodiments, pinion clips 120a, 120b will be formed of a material capable of elastic deformation. However, pinion clips 120a, 120b may be formed of materials that do not deform elastically but rather have a predefined, rigid configuration. In the case of pinion clips 120a, 120b formed of materials capable of elastic deformation, generally when the pinion clips 120a, 120b are engaged by a drive member having a cross-sectional dimension that is larger than a dimension of a span thereof, the pinion clips 120a, 120b will deform elastically and produce a clamping force on the outer surface of the drive member. As such, when drive shafts are inserted into the pinion clips 120a and 120b, the pinion clips 120a, 120b will engage the outer circumference of the drive shafts and enhance the connection between pinions 110a, 110b and respective drive shaft (not shown).


As pinion clips 120a and 120b are substantially similar, reference will hereafter be made solely to pinion clip 120a, but will impliedly apply to pinion 120b as well.


Turning now to FIGS. 3-7B, a pinion clip 120a, in accordance with an embodiment of the present disclosure, is shown in which the pinion clip 120a includes a base member or backspan 150, defining a hole or aperture 150c therein, a pair of pinion clip arms 130a and 130b, extending from opposed longitudinal ends of base member 150, and a pair of base posts 150a and 150b extending from opposed side edges of base member or backspan 150.


As seen in FIGS. 3-7B, backspan 150 defines a plane and base posts 150a, 150b extend from backspan 150 in a direction transverse to the plane defined by backspan 150 so as to extend away from one another. Also as seen in FIGS. 3-7B, pinion clip arms 130a, 130b include a first portion that extends from backspan 150 in a direction transverse to the plane defined by backspan 150 so as to extend towards one another and a second portion, extending from the first portion, in a direction that is away from one another. As such, pinion clip arms 130a, 130b each define a goose-neck portion that extends toward one another.


In embodiments, base posts 150a and 150b are capable of deformation. In this view, pinion clip 120a is connected to pinion 110a by inserting pinion clip 120a into the inner circumference of bore 112a of pinion 110a.


Turning now to FIGS. 4A-4D, cross sectional views of the sequence of placement and securing of pinion clip 120a within the pinion 110a is shown. In order to connect pinion clip 120a to pinion 110a, base posts 150a, 150b are aligned with respective base post holes (only one base post hole 180 being shown in FIG. 3) and pinion clip 120a is advanced into bore 112a of pinion 110a, with the assistance of an insertion tool 170. Pinion clip 120a is inserted into bore 112a of pinion 110a such that base posts 150a, 150b enter bore 112a before pinion clip aims 130a, 130b. In order to facilitate insertion, insertion tool 170 may include a nub or stem 172 extending from a distal surface thereof that is configured and dimensioned to engage the aperture 150c defined in backspan 150.


In accordance with the present disclosure, base posts 150a, 150b define a distance between the tips thereof that is greater than a diameter of bore 112a of pinion 110a. In this manner, base posts 150a, 150b must be flexed toward one another in order to insert pinion clip 120a into bore 112a of pinion 110a. As pinion clip 120a is advanced into bore 112a of pinion 110a until base posts 150a, 150b engage and enter base post holes 180a, 180b.


As seen in FIG. 4A, the pinion clip 120a is disposed within the pinion 110a, such that the tips of base posts 150a and 150b rest upon or within base post holes 180a and 180b.


As seen in FIG. 4B, the insertion tool 170 is shown in engagement with pinion clip 120a, such that stem 172 of insertion tool 170 is seated in aperture 150c of backspan 150.


As seen in FIG. 4C, the insertion tool 170 is shown applying a force on the pinion clip 120a such that the base posts 150a and 150b are defoinied to extend into and better engage pinion holes 180a and 180b.


Turning to FIG. 4D, the final resting position of the pinion clip 120a is shown, illustrating the base posts 150a and 150b, in their deformed state, in engagement with the base post holes 180a and 180b such that pinion clip 120a is securely disposed within pinion 110.


The placement of the base posts 150a and 150b in the base post holes 180a and 180b have the dual purpose of preventing movement of the pinion clip 120a in all three axial directions. As so placed, pinion clip arms 130a and 130b engage pinion grooves 114a and 114b in the outer circumference of pinion 110a.


As seen in FIGS. 5 and 6, the final placement of the pinion clip 120a is shown. In particular, as seen in FIGS. 5 and 6, backspan 150 rests on ridges or ledges which are formed at the base of pinion grooves 114a, 114b and base posts 150a, 150b are engaged within base post holes 180a, 180b.


Turning now to FIGS. 7A and 7B, a drive shaft 200 is shown and as illustrated in FIG. 7B, is shown inserted into pinion 110a and engaged by pinion clip 120a.


As seen in FIG. 7B, the goose-neck portions of pinion clip arms 130a and 130b can be seen engaged against or in contact with an outer surface of drive shaft 200 while in pinion 110a. At least one of pinion clip arms 130a, 130b is in a deflected condition in response to the presence of drive shaft 200 in pinion 110a and between pinion clip arms 130a, 130b. In particular, the goose-neck portion of one of pinion clip arms 130a, 130b will enter and engage a longitudinally extending slot or groove 202 (see FIG. 7A) formed in the outer surface of drive shaft 200 and the goose-neck portion of the other of pinion clip arms 130a, 130b will engage an outer surface of drive shaft 200. A clamping force of the pinion clip arms 130a and 130b creates a secure connection about the drive shaft 200. Due to the engagement of the base posts 150a and 150b (unseen) within the base post holes 180a and 180b (also unseen), pinion clip 110a is prevented from rotation relative to the pinion 110a. As such, a torque or rotation in the drive shaft 200 is transmitted wholly and directly to the pinion 110a.


Turning now to FIG. 8, another embodiment of a pinion clip 220a is shown in which the pinion clip 220a includes a collar 250 for attaching the pinion clip 220a to the pinion 210a. In this embodiment, the pinion clip 220a is disposed on the outer circumference of pinion 210a. As seen in FIG. 8, pinion clip 220a includes a split collar 250 defining an opening 252 for receiving pinion 210a therein and is split 252 at a radial location thereof so as to define a pair of ends 252a, 252b. The ends 252a, 252b of collar 250 are formed radially inward to define a flat 256a.


Pinion clip 210a includes a pair of pinion clip arms 230a, 230b extending from an edge of split collar 250. Pinion clip arms 230a, 230b are substantially similar to pinion clip arms 130a, 130b as described above and will not be described in further detail herein. Pinion clip arms 230a and 230b engage pinion grooves 214a and 214b, respectively, when pinion clip 220a is connected to pinion 210a. When engaged to pinion 210a, flat 256a of collar 250 of pinion clip 220a engages a receiving surface or flat 216a defined in an outer surface of pinion 210a, which prevents at least rotation of pinion clip 220a about a central rotational axis of pinion 210a.



FIG. 9 illustrates pinion clip 220a being fitted about pinion 210a. As shown in FIG. 9, flat 256a of pinion clip 220a is aligned for engagement with the receiving surface or fiat 216a, and the pinion clip arms 230a and 230b are aligned for engagement with pinion grooves 214a and 214b.


As seen in FIG. 10, an insertion tool 290 can be used to fit pinion clip 220a about pinion 210a. The insertion tool 290 is shown here having receiving slots 290a and 290b (hidden from view) for accommodating pinion clip arms 230a, 230b of pinion clip 220a during connection of pinion clip 220a to pinion 210a such that a distal surface of the insertion tool 290 directly engages the collar 250a. In use, insertion tool 290 is advanced relative to pinion 210a, so as to advance pinion clip 220a over and along pinion 210a.


Turning now to FIG. 11, the pinion clip 220a is shown in its final resting position about pinion 210a. In the final resting position, flat 256a of collar 250 is shown in engagement with the receiving surface or flat 216a of pinion 210a, with flat 256a of pinion clip 220a beneath a lip 218a defined by flat 216a of pinion 210a, and the pinion clip arms 230a and 230b are in engagement with pinion grooves 214a and 214b, respectively. Thus, the pinion clip 220a is secured about the pinion 210a, and is restricted from at least rotation about a central rotational axis of pinion 210a and distal movement along pinion 210a. When secured to pinion 210a, the goose-neck portions of pinion clip arms 230a, 230b are configured and dimensioned so as to project radially inward from an inner surface or beyond an inner surface of the bore 212a of pinion 210a so as to engage a drive shaft 200 that is connected to pinion 210a.


As seen in FIG. 12, a final assembly of the pinion clip 220a on the pinion 210a is shown, together with the engagement of drive shaft 200. Pinion clip arms 230a, 230b engage drive shaft 200 in a manner identical to or substantially similar to the manner in which pinion clip arms 130a, 130b engage drive shaft 200, as described in detail above.


Turning now to FIGS. 13-15, an embodiment of another pinion clip 320a is shown, and is substantially similar to pinion clip 220a. Pinion clip 320a includes a collar 350 substantially similar to collar 250 of pinion clip 220a. In contrast to collar 250, collar 350 is entirely circular, devoid of any flat as provided in collar 250 of pinion clip 220a. Collar 350 is configured to be seated in an annular race 316a defined in an outer surface of pinion 310. In this embodiment, engagement of the goose-neck portions of pinion clip arms 330a, 330b of pinion clip 310a in pinion grooves 314a, 314b of pinion 310a prevents at last rotation of the pinion clip 320a about the central rotational axis of pinion 310a


Referring to FIG. 14, a final resting position of pinion clip 320a about the pinion 310a is shown. As seen in FIG. 14, collar 350 is shown deposed within the annular race 316a defined in the outer surface of pinion 310. Also as illustrated in FIG. 14, the pinion clip arms 330a, 330b are shown disposed within respective pinion grooves 314a, 314b.


As seen in FIG. 15, a final assembly of pinion clip 320a, on the pinion 310a is shown together with the engagement of drive shaft 200. Pinion clip arms 330a, 330b engage drive shaft 200 in a manner identical to or substantially similar to the manner in which pinion clip arms 130a, 130b engage drive shaft 200, as described in detail above.


Referring to FIGS. 16-19, yet another embodiment of a pinion clip 420a is shown. Pinion clip 420a includes a pair of pinion clip arms 430a, 430b extending from a base member 450 in the form of a U-shaped stem having a pair of legs 450a, 450b. Each leg 450a, 450b defines an aperture 452a, 452b therein that is juxtaposed with respect to one another. Pinion clip arms 430a, 430b extend from a respective leg 450a, 450b in such a manner so as to define a respective outwardly projecting shoulder 454a, 454b.


With continued reference to FIG. 16, pinion 410a defines an aperture 416 extending radially therethrough. Aperture 416 is axially located along pinion 410a such that apertures 452a, 452b of legs 450a, 450b of base member 450 align therewith when pinion clip 420a is seated with the bore 412a of pinion 410a. Pinion 410a further includes a locking pin 440 sized for insertion into and through aperture 416 of pinion 410a and apertures 452a, 452b of pinion clip 410a. With pinion clip 420a seated in pinion 410a and with pin 440 extending through aperture 416 thereof and through apertures 452a, 452b, pin 440 is used to secure pinion clip 420a to pinion 410a.


Turning now to FIGS. 17 and 18, pinion clip 420a is shown connected to pinion 410a. Here, the locking pin 440 is shown extending through pinion 410a and legs 450a, 450b of pinion clip 420a to secure the pinion clip 420a in place in pinion 410a. The shoulders 454a, 454b between pinion clip arms 430a, 430b and legs 450a, 450b rest upon ridges or ledges which are formed at the base portion of pinion grooves 412a, 412b, as shown.


As seen in FIG. 19, the complete assembly of the pinion clip 420a within the pinion 410a is shown. In particular, the pinion clip arms 430a and 430b are in engagement with the pinion grooves 414a, 414b, respectively, and locking pin 440 is extending through pinion 410a and legs 454a, 454b of pinion 410. As seen in FIG. 19, pinion clip arms 430a, 430b engage drive shaft 200 in a manner identical to or substantially similar to the manner in which pinion clip arms 130a, 130b engage drive shaft 200, as described in detail above.


In accordance with the present disclosure, it is contemplated that a pinion clip may have one, two, or more than two arms, and that these arms may or may not have one or more bends for engagement with surfaces within or without a pinion. Further, the pinion clip arm(s) may lack bends altogether in embodiments.


It is contemplated that any of the pinion clips provided herein may be coated with a finishing material that enhances the frictional surface engagement between pinion clip arms and drive shaft.


It is further contemplated that other embodiments of a pinion clip incorporating a collar may employ other methods such as press fit to maintain an attachment to a pinion.


It is additionally contemplated that other embodiments of a pinion clip incorporating a collar may incorporate shaped surfaces on the interior circumference of the collar for engagement with a receiving surface on the outer circumference of a pinion.


It is also contemplated that other embodiments of a pinion clip may be constructed so as to accommodate non-circular drive shafts.


It will be understood that various modifications may be made to the embodiments of the presently disclosed coupling clip assemblies. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

Claims
  • 1. A pinion clip operable with a drive shaft and pinion assembly, the pinion clip configured to engage a pinion defining a longitudinal axis and having an internal bore, the pinion clip comprising: two arms adapted to be disposed along the longitudinal axis of the pinion; anda base member defining a base axis and two base posts, the base axis in perpendicular orientation to the longitudinal axis of the pinion, and the base member further defining an aperture centrally disposed thereon such that the two base posts are in opposed relation to each other along an axis defined by the aperture;wherein the pinion clip is adapted to be positioned on the pinion such that the two arms are adapted to intersect a diameter of the internal bore of the pinion; andwherein the two base posts of the base member are adapted to secure the pinion clip to the pinion.
  • 2. The pinion clip of claim 1, wherein each arm forms a goose-neck configuration such that a distal end of each arm extends away from the longitudinal axis defined by the pinion.
  • 3. The pinion clip of claim 1, wherein the two base posts are insertable into apertures of the pinion to secure the pinion clip to the pinion.
  • 4. A pinion and pinion clip assembly configured for selective coupling with a rotatable drive shaft, the pinion and pinion clip assembly comprising: a pinion being a substantially cylindrical member, the pinion having proximal and distal ends and defining a longitudinal axis and an internal bore;a pinion clip configured for connection to the pinion, the pinion clip including two arms adapted to be disposed along the longitudinal axis of the pinion and a base member defining a base axis and two base posts, the base axis in perpendicular orientation to the longitudinal axis of the pinion, and the base member further defining an aperture centrally disposed thereon such that the two base posts are in opposed relation to each other along an axis defined by the aperture;wherein the pinion clip is adapted to be positioned on the pinion such that the two arms are adapted to intersect a diameter of the internal bore of the pinion; andwherein the two base posts of the base member are adapted to secure the pinion clip to the pinion.
  • 5. The pinion and pinion clip assembly of claim 4, wherein the pinion includes at least one pinion groove formed in an outer surface thereof and being configured to receive the two base posts of the base member of the pinion clip to secure the pinion clip to the pinion.
  • 6. The pinion and pinion clip assembly of claim 4, wherein each arm forms a goose-neck configuration such that a distal end of each arm extends away from the longitudinal axis defined by the pinion.
  • 7. The pinion and pinion clip assembly of claim 4, wherein the two base posts extend away from the two arms.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation-in-Part Application claiming the benefit of and priority to U.S. patent application Ser. No. 10/094,051, filed on Mar. 8, 2002 now U.S. Pat. No. 8,016,855, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 60/346,656, filed on Jan. 8, 2002, the entire contents of each of which are incorporated by reference herein.

US Referenced Citations (545)
Number Name Date Kind
1798902 Raney Mar 1931 A
1881250 Tomlinson Oct 1932 A
2031682 Wappler et al. Feb 1936 A
2174219 Balma Sep 1939 A
2246647 Vancura Jun 1941 A
2419045 Whittaker Apr 1947 A
2725628 O'Neilly et al. Dec 1955 A
3079606 Bobrov et al. Mar 1963 A
3120845 Horner Feb 1964 A
3193165 Akhalaya et al. Jul 1965 A
3252643 Strekopytov et al. May 1966 A
3253643 Gudheim May 1966 A
3256875 Tsepelev et al. Jun 1966 A
3275211 Hirsch et al. Sep 1966 A
3315863 O'Dea Apr 1967 A
3317105 Astafiev et al. May 1967 A
3369425 Runkle et al. Feb 1968 A
3388847 Kasulin et al. Jun 1968 A
3490576 Alessi et al. Jan 1970 A
3490675 Green et al. Jan 1970 A
3494533 Green et al. Feb 1970 A
3499591 Green Mar 1970 A
3552626 Astafiev et al. Jan 1971 A
3558165 Lundergan Jan 1971 A
3561799 Hutchinson Feb 1971 A
3568659 Karnegis Mar 1971 A
3589589 Akopov Jun 1971 A
3593903 Astafiev et al. Jul 1971 A
3618842 Bryan Nov 1971 A
3638652 Kelley Feb 1972 A
3643851 Green et al. Feb 1972 A
3662939 Bryan May 1972 A
3675688 Bryan et al. Jul 1972 A
3692224 Astafiev et al. Sep 1972 A
3717294 Green Feb 1973 A
3735762 Bryan et al. May 1973 A
3777538 Weatherly et al. Dec 1973 A
3788303 Hall Jan 1974 A
3795034 Strekopytov et al. Mar 1974 A
3815476 Green et al. Jun 1974 A
3819100 Noiles et al. Jun 1974 A
3837555 Green Sep 1974 A
3844289 Noiles et al. Oct 1974 A
3858577 Bass et al. Jan 1975 A
3859986 Okada et al. Jan 1975 A
3882854 Hulka et al. May 1975 A
3892228 Mitsui Jul 1975 A
3935981 Akopov et al. Feb 1976 A
3949924 Green Apr 1976 A
3952748 Kaliher et al. Apr 1976 A
RE28932 Noiles et al. Aug 1976 E
4014492 Rothfuss Mar 1977 A
4027510 Hiltebrandt Jun 1977 A
4060089 Noiles Nov 1977 A
4064881 Meredith Dec 1977 A
4071029 Richmond et al. Jan 1978 A
4085756 Weaver Apr 1978 A
4086926 Green et al. May 1978 A
4092986 Schneiderman Jun 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4169476 Hiltebrandt Oct 1979 A
4198960 Utsugi Apr 1980 A
4198982 Fortner et al. Apr 1980 A
4202479 Razgulov et al. May 1980 A
4202480 Annett May 1980 A
4207873 Kruy Jun 1980 A
4207898 Becht Jun 1980 A
4244372 Kapitanov et al. Jan 1981 A
4261244 Becht et al. Apr 1981 A
4273111 Tsukaya Jun 1981 A
4273129 Boebel Jun 1981 A
4286585 Ogawa Sep 1981 A
4286598 Kapitanov et al. Sep 1981 A
4289131 Mueller Sep 1981 A
4289133 Rothfuss Sep 1981 A
4296881 Lee Oct 1981 A
4304236 Conta et al. Dec 1981 A
4310115 Inoue Jan 1982 A
4319576 Rothfuss Mar 1982 A
4325377 Boebel Apr 1982 A
4334539 Childs et al. Jun 1982 A
4349028 Green Sep 1982 A
4351466 Noiles Sep 1982 A
4354628 Green Oct 1982 A
4367729 Ogiu Jan 1983 A
4379457 Gravener et al. Apr 1983 A
4383634 Green May 1983 A
4391401 Moshofsky Jul 1983 A
4402311 Hattori Sep 1983 A
4402445 Green Sep 1983 A
4429695 Green Feb 1984 A
4442964 Becht Apr 1984 A
4445509 Auth May 1984 A
4445892 Hussein et al. May 1984 A
4448188 Loeb May 1984 A
4461305 Cibley Jul 1984 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485811 Chernousov Dec 1984 A
4485817 Swiggett Dec 1984 A
4487270 Huber Dec 1984 A
4488523 Shichman Dec 1984 A
4489724 Amegger Dec 1984 A
4489875 Crawford et al. Dec 1984 A
4494057 Hotta Jan 1985 A
4494549 Namba et al. Jan 1985 A
4499895 Takayama Feb 1985 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4506670 Crossley Mar 1985 A
4506671 Green Mar 1985 A
4513746 Aranyi et al. Apr 1985 A
4519532 Foslien May 1985 A
4520817 Green Jun 1985 A
4527724 Chow et al. Jul 1985 A
4534352 Korthoff Aug 1985 A
4534420 Goldelius Aug 1985 A
4535773 Yoon Aug 1985 A
4559928 Takayama Dec 1985 A
4566620 Green et al. Jan 1986 A
4573468 Conta et al. Mar 1986 A
4573622 Green et al. Mar 1986 A
4574806 McCarthy Mar 1986 A
4576167 Noiles Mar 1986 A
4589412 Kensey May 1986 A
4589416 Green May 1986 A
4589582 Bilotti May 1986 A
4591085 Di Giovanni May 1986 A
4592354 Rothfuss Jun 1986 A
4593679 Collins Jun 1986 A
4603693 Conta et al. Aug 1986 A
4605001 Rothfuss et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4607638 Crainich Aug 1986 A
4610383 Rothfuss et al. Sep 1986 A
D286567 Lichtman et al. Nov 1986 S
4631052 Kensey Dec 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4643190 Heimberger Feb 1987 A
4644952 Patipa et al. Feb 1987 A
4646745 Noiles Mar 1987 A
4655673 Hawkes Apr 1987 A
4657017 Sorochenko Apr 1987 A
4664305 Blake, III et al. May 1987 A
4667673 Li May 1987 A
4669471 Hayashi Jun 1987 A
4671445 Barker et al. Jun 1987 A
4672961 Davies Jun 1987 A
4674515 Andou et al. Jun 1987 A
4688555 Wardle Aug 1987 A
4696667 Masch Sep 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4705038 Sjostrom et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4714187 Green Dec 1987 A
4715502 Salmon Dec 1987 A
4728020 Green et al. Mar 1988 A
4732156 Nakamura Mar 1988 A
4733118 Mihalko Mar 1988 A
4742815 Ninan et al. May 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4756309 Sachse et al. Jul 1988 A
4760840 Fournier, Jr. et al. Aug 1988 A
4763669 Jaeger Aug 1988 A
4767044 Green Aug 1988 A
4771774 Simpson et al. Sep 1988 A
4776506 Green Oct 1988 A
4781186 Simpson et al. Nov 1988 A
4784137 Kulik et al. Nov 1988 A
4789090 Blake, III Dec 1988 A
4796793 Smith et al. Jan 1989 A
4805823 Rothfuss Feb 1989 A
4815469 Cohen et al. Mar 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819632 Davies Apr 1989 A
4819853 Green Apr 1989 A
4841888 Mills et al. Jun 1989 A
4848637 Pruitt Jul 1989 A
4858608 McQuilkin Aug 1989 A
4863088 Redmond et al. Sep 1989 A
4867158 Sugg Sep 1989 A
4869415 Fox Sep 1989 A
4873977 Avant et al. Oct 1989 A
4887599 Muller Dec 1989 A
4887612 Esser et al. Dec 1989 A
4890602 Hake Jan 1990 A
4892244 Fox et al. Jan 1990 A
4893613 Hake Jan 1990 A
4893622 Green et al. Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4919152 Ger Apr 1990 A
4928699 Sasai May 1990 A
4930494 Takehana et al. Jun 1990 A
4932960 Green et al. Jun 1990 A
4936845 Stevens Jun 1990 A
4941454 Wood et al. Jul 1990 A
4941623 Pruitt Jul 1990 A
4944093 Falk Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
4955882 Hakky Sep 1990 A
4955959 Tompkins et al. Sep 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
4976688 Rosenblum Dec 1990 A
4976710 Mackin Dec 1990 A
4977900 Fehling et al. Dec 1990 A
4978049 Green Dec 1990 A
4982726 Taira Jan 1991 A
4991764 Mericle Feb 1991 A
4994060 Rink et al. Feb 1991 A
4995877 Ams et al. Feb 1991 A
5005749 Aranyi Apr 1991 A
5018657 Pedlick et al. May 1991 A
5031814 Tompkins et al. Jul 1991 A
5040715 Green et al. Aug 1991 A
5059203 Husted Oct 1991 A
5065929 Schulze et al. Nov 1991 A
D322143 Spreckelmeier Dec 1991 S
5071430 de Salis et al. Dec 1991 A
5077506 Krause Dec 1991 A
5100041 Storace Mar 1992 A
5100042 Gravener et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5108391 Flachenecker et al. Apr 1992 A
5114065 Storace May 1992 A
5119983 Green et al. Jun 1992 A
5129570 Schulze et al. Jul 1992 A
5133359 Kedem Jul 1992 A
5133713 Huang et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5156315 Green et al. Oct 1992 A
5157837 Rose Oct 1992 A
5158222 Green Oct 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5171251 Bregen et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5192292 Cezana et al. Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5201325 McEwen et al. Apr 1993 A
5201750 Hocherl et al. Apr 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5207691 Nardella May 1993 A
5207697 Carusillo et al. May 1993 A
5217003 Wilk Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219111 Bilotti et al. Jun 1993 A
5221279 Cook et al. Jun 1993 A
5224951 Freitas Jul 1993 A
5226426 Yoon Jul 1993 A
5237884 Seto Aug 1993 A
5243967 Hibino Sep 1993 A
5249583 Mallaby Oct 1993 A
5253793 Green Oct 1993 A
5254117 Rigby et al. Oct 1993 A
5258004 Bales et al. Nov 1993 A
5258007 Spetzler et al. Nov 1993 A
5258008 Wilk Nov 1993 A
5261877 Fine et al. Nov 1993 A
5267997 Farin et al. Dec 1993 A
5268622 Philipp Dec 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5275322 Brinkerhoff et al. Jan 1994 A
5275323 Schulze et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5279565 Klein et al. Jan 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290299 Fain et al. Mar 1994 A
5290303 Pingleton et al. Mar 1994 A
5292053 Bilotti et al. Mar 1994 A
5295990 Levin Mar 1994 A
5300087 Knoepfler Apr 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5312434 Crainich May 1994 A
5314436 Wilk May 1994 A
5318221 Green et al. Jun 1994 A
5320627 Sorensen et al. Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324288 Billings et al. Jun 1994 A
5324300 Elias et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330486 Wilk Jul 1994 A
5333772 Rothfuss et al. Aug 1994 A
5333773 Main et al. Aug 1994 A
5336229 Noda Aug 1994 A
5342299 Snoke et al. Aug 1994 A
5342381 Tidemand Aug 1994 A
5342382 Brinkerhoff et al. Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5352222 Rydell Oct 1994 A
5352223 McBrayer et al. Oct 1994 A
5352235 Koros et al. Oct 1994 A
5354266 Snoke Oct 1994 A
5356408 Rydell Oct 1994 A
5358506 Green et al. Oct 1994 A
5364001 Bryan Nov 1994 A
5364409 Kuwabara et al. Nov 1994 A
5366133 Geiste Nov 1994 A
5366476 Noda Nov 1994 A
5368015 Wilk Nov 1994 A
5368607 Freitas Nov 1994 A
5380321 Yoon Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5391156 Hildwein et al. Feb 1995 A
5392978 Velez et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5395369 McBrayer et al. Mar 1995 A
5396900 Slater et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
D357535 Grant et al. Apr 1995 S
5403312 Yates et al. Apr 1995 A
5403326 Harrison et al. Apr 1995 A
5403327 Thornton et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5413268 Green et al. May 1995 A
5415334 Williamson et al. May 1995 A
5425705 Evard et al. Jun 1995 A
5425738 Gustafson et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431645 Smith et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437636 Snoke et al. Aug 1995 A
5437684 Calabrese et al. Aug 1995 A
5441507 Wilk Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5460182 Goodman et al. Oct 1995 A
5464404 Abela et al. Nov 1995 A
5465894 Clark et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5468250 Paraschac et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5474223 Viola et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5482054 Slater et al. Jan 1996 A
5482197 Green et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5496269 Snoke Mar 1996 A
5496317 Goble et al. Mar 1996 A
5514134 Rydell et al. May 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5520634 Fox et al. May 1996 A
5524180 Wang et al. Jun 1996 A
5527313 Scott et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5531687 Snoke et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5549565 Ryan et al. Aug 1996 A
5553765 Knodel et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5562677 Hildwein et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5569289 Yoon Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5578052 Koros et al. Nov 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsukagoshii et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5591186 Wurster et al. Jan 1997 A
5591196 Marin et al. Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599347 Hart et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609560 Ichikawa et al. Mar 1997 A
5618303 Marlow et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5626607 Malecki et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5651780 Jackson et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5665100 Yoon Sep 1997 A
5667473 Finn et al. Sep 1997 A
5667478 McFarcin et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5676674 Bolanos et al. Oct 1997 A
5688269 Newton et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5693031 Ryan et al. Dec 1997 A
5702408 Wales et al. Dec 1997 A
5709335 Heck Jan 1998 A
5711472 Bryan Jan 1998 A
5725536 Oberlin et al. Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5735849 Baden et al. Apr 1998 A
5735861 Peifer et al. Apr 1998 A
5741285 McBrayer et al. Apr 1998 A
5749885 Sjostrom et al. May 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762458 Wang et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5797835 Green Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5797944 Nobles et al. Aug 1998 A
5807180 Knodle et al. Sep 1998 A
5807377 Madhani et al. Sep 1998 A
5807402 Yoon Sep 1998 A
5814044 Hooven Sep 1998 A
5815640 Wang et al. Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5846221 Snoke et al. Dec 1998 A
5855583 Wang et al. Jan 1999 A
5855590 Malecki et al. Jan 1999 A
5857996 Snoke Jan 1999 A
5860953 Snoke et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5871471 Ryan et al. Feb 1999 A
5878193 Wang et al. Mar 1999 A
5881943 Heck et al. Mar 1999 A
5893875 O'Connor et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5907664 Wang et al. May 1999 A
5913842 Boyd et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5925055 Adrian et al. Jul 1999 A
5931848 Saadat Aug 1999 A
5947363 Bolduc et al. Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5957363 Heck Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957884 Hooven Sep 1999 A
5976159 Bolduc et al. Nov 1999 A
5984919 Hilal et al. Nov 1999 A
5989215 Delmotte et al. Nov 1999 A
5993378 Lemelson Nov 1999 A
5993454 Longo Nov 1999 A
5997510 Schwemberger Dec 1999 A
6001108 Wang et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007512 Hooven Dec 1999 A
6007531 Snoke et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6010493 Snoke Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6063095 Wang et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6074402 Peifer et al. Jun 2000 A
6083163 Wegner et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6090120 Wright et al. Jul 2000 A
6098660 Hansen Aug 2000 A
6099466 Sano et al. Aug 2000 A
6106512 Cochran et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6126591 McGarry et al. Oct 2000 A
6132368 Cooper Oct 2000 A
6162220 Nezhat Dec 2000 A
6165191 Shibata et al. Dec 2000 A
6174324 Egan et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
D438617 Cooper et al. Mar 2001 S
6201984 Funda et al. Mar 2001 B1
6206903 Ramans Mar 2001 B1
D441076 Cooper et al. Apr 2001 S
6209773 Bolduc et al. Apr 2001 B1
6217591 Egan et al. Apr 2001 B1
D441862 Cooper et al. May 2001 S
6231587 Makower May 2001 B1
6238414 Griffiths May 2001 B1
6244809 Wang et al. Jun 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
D444555 Cooper et al. Jul 2001 S
6264087 Whitman Jul 2001 B1
6270508 Klieman Aug 2001 B1
6309397 Julian et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6315184 Whitman Nov 2001 B1
6331181 Tierney et al. Dec 2001 B1
6346072 Cooper Feb 2002 B1
6348061 Whitman Feb 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6368340 Malecki et al. Apr 2002 B2
6371952 Madhani et al. Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6398726 Ramans et al. Jun 2002 B1
6443973 Whitman Sep 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6505768 Whitman Jan 2003 B2
6517565 Whitman et al. Feb 2003 B1
6533157 Whitman Mar 2003 B1
6790217 Schulze et al. Sep 2004 B2
20010016146 Blanchard Aug 2001 A1
20010016750 Malecki et al. Aug 2001 A1
20010031975 Whitman et al. Oct 2001 A1
20020032451 Tierney et al. Mar 2002 A1
20020032452 Tierney et al. Mar 2002 A1
20020042620 Julian et al. Apr 2002 A1
20020045888 Ramans et al. Apr 2002 A1
20020049454 Whitman et al. Apr 2002 A1
20020055795 Niemeyer et al. May 2002 A1
20020072736 Tierney et al. Jun 2002 A1
20020165444 Whitman Nov 2002 A1
20030105478 Whitman et al. Jun 2003 A1
20030130677 Whitman et al. Jul 2003 A1
20090294602 Korczak Dec 2009 A1
Foreign Referenced Citations (74)
Number Date Country
2330182 Jan 1975 DE
29 03 159 Jul 1980 DE
2944108 Oct 1980 DE
31 14 135 Oct 1982 DE
3114135 Oct 1982 DE
33 00 768 Jul 1984 DE
42 13 426 Oct 1992 DE
4312147 Oct 1992 DE
41022 Dec 1981 EP
0 116 220 Aug 1984 EP
0 121 474 Oct 1984 EP
0 142 225 May 1985 EP
0 156 774 Oct 1985 EP
0 203 375 Dec 1986 EP
0 216 532 Apr 1987 EP
293123 Jan 1988 EP
324166 Jul 1989 EP
324637 Jul 1989 EP
365153 Apr 1990 EP
369324 May 1990 EP
373762 Jun 1990 EP
0 399 701 Nov 1990 EP
0 514 139 Nov 1992 EP
0 536 903 Apr 1993 EP
0 539 762 May 1993 EP
0 552 050 Jul 1993 EP
0 593 920 Apr 1994 EP
0 598 579 May 1994 EP
0 621 006 Oct 1994 EP
630612 Dec 1994 EP
0 634 144 Jan 1995 EP
639349 Feb 1995 EP
679367 Nov 1995 EP
0 705 571 Apr 1996 EP
0 648 476 Jan 1998 EP
552423 Jan 1998 EP
0 878 169 Nov 1998 EP
0 947 167 Oct 1999 EP
0 653 922 Dec 1999 EP
581400 May 2000 EP
484677 Jul 2000 EP
2660851 Oct 1991 FR
1 082 821 Sep 1967 GB
1352554 May 1974 GB
1452185 Oct 1976 GB
2048685 Dec 1980 GB
2165559 Apr 1986 GB
2180455 Apr 1987 GB
77 11 347 Jan 1979 NL
7711347 Apr 1979 NL
659146 Apr 1979 RU
WO 8203545 Oct 1982 WO
WO 9005489 May 1990 WO
WO 9005491 May 1990 WO
WO 9006085 Jun 1990 WO
WO 9107136 May 1991 WO
WO 9216141 Oct 1992 WO
WO 9308754 May 1993 WO
WO 9314706 Aug 1993 WO
WO 9535065 Dec 1995 WO
WO 9518572 Jul 1996 WO
WO 9712555 Apr 1997 WO
WO 9814129 Apr 1998 WO
WO 9920328 Apr 1999 WO
WO 9958076 Nov 1999 WO
WO 0072765 Dec 2000 WO
WO 0072765 Dec 2000 WO
WO 0103587 Jan 2001 WO
WO 0108572 Feb 2001 WO
WO 0117448 Mar 2001 WO
WO 0135813 May 2001 WO
WO 0162163 Aug 2001 WO
WO 0191646 Dec 2001 WO
WO 02058539 Aug 2002 WO
Related Publications (1)
Number Date Country
20110290054 A1 Dec 2011 US
Provisional Applications (1)
Number Date Country
60346656 Jan 2002 US
Continuation in Parts (1)
Number Date Country
Parent 10094051 Mar 2002 US
Child 13207529 US