The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without payment of any royalties thereon or therefor.
The present invention relates to a novel pinless connector that replaces traditional to pin and socket connectors. More specifically, but without limitation, the present invention is an electronic connector, meeting military specifications, containing powered circuitry in each end to communicate with the opposing end via infrared light.
Military personnel often operate military aircraft in the extreme weather and around harsh environmental conditions that include dirt and sand. They also conduct missions that require the frequent removal and swapping of equipment, particularly avionic equipment for testing and evaluation. Exposure of avionic equipment connectors to extreme weather and harsh environments may lead to pin corrosion which causes the shorting and degradation of pin connections and the frequent removal and re-installation of equipment leads to bent and broken pins rendering the equipment inoperable and therefore requiring significant repair, replacement time and monetary costs.
Moreover, traditional connectors, even under normal use, are subject to mechanical and environmental stresses that degrade their effectiveness and jeopardize the integrity of the system. Bent, broken and corroded pins are common occurrences in connectors for many different kinds of equipment. These are maintenance issues that require a significant amount of time, manpower, and money to identify and remedy.
Therefore, what is needed is an electronic connector that eliminates the need for pins through the use of non-contact methods and has the mechanical integrity to maintain communication in harsh environments and through repeated disconnections and reconnections.
The present invention is directed to a pinless connector for electronic devices that replaces traditional pin and socket connectors. Data is communicated using a method that does not require physical electrical contact between the transmitting and receiving equipment such as infrared or the like. Small ruggedized modules are attached to the end of a cable connected to an electronic device and interfaced with another such connector on the end of a cable connected to a separate electronic device. Alternatively the connectors can be machined or fixed directly onto the electronic devices to eliminate the need for cables. As with a traditional connector, the actual interface is transparent to the equipment generating and receiving information to and from the data bus.
An embodiment of the connector has housing with opposing, interconnecting halves. Each half of the housing has an embedded printed circuit board. A power supply is electrically connected to each printed circuit board. Each printed circuited board comprises a logic unit, a transceiver in electrical communication with the logic unit, and a radiating element, such as a micro antenna in electrical communication with the transceiver.
The processor on the printed circuit board accepts a communication signal from the electronic device and transmits it to the logic unit. The logic unit receives and processes the communication signal and transmits the communication signal to the transceiver. The transceiver receives the processed communication signal and transmits it via an electronic radiating element to an electronic transceiver element in the opposite half of the housing. The signal is preferably an infrared transmission.
The connector housing halves are made of material that prevents signal leakage. The housing halves also have flush, open connector faces that allow the communications signal to pass through and can be hermetically sealed together.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims, and accompanying drawings wherein:
The preferred embodiments of the present invention are illustrated by way of example below and with reference to
When in use, each half of the connector (10) is separately supplied with power through electronic connections (140 and 145) to separate pieces of electronic equipment that need to communicate with each other. The transceiver system (120) on the multilayer printed circuit board (135) comprises a logic unit (150) in communication with a transceiver (155). The logic unit (150) processes signals and transmits them to the transceiver (155) which sends them to a radiating element (160). The radiating element (160) then transmits the electronic signal to the radiating element (165) in the opposite end of the connector (105). The radiating element (165) may be any one of the various types of micro antennas, light emitting diode (LED) or the like that can transmit and receive electronic signals.
In one embodiment, the connector meets military specifications (Mil-Spec). That is, the connector is designed to a Department of Defense (DOD) standard to ensure reliability for military operations. Consequently, Mil-Spec equipment is sturdier and more robust than equipment used in civilian applications.
Each end of the WRA connector (220 and 225) is electronically isolated from the other and can be interfaced with wires (not shown). Examples of the interfacing wires (140 and 145) that may be used with this embodiment are shown in
While signals can be present on the pins of regular connectors they must be physically connected for one end of the connector to receive the signal. Unlike pinned connectors, the opposing ends of the connectors of the present invention do not require a physical connection to receive transmissions from each other. In contrast, because the pinless connector of this invention uses infrared technology, the ends of the connectors need only be within the infrared operating range of each other to transmit and receive signals. However, a link detection scheme can be implemented to stop data transmission if a physical link is not present.
Also, the hardware and software in each module of the connector is identical, therefore there is no need for separate addresses for synching or handshaking between modules. The modules have the capability for digital analysis, post processing and the modification of the received signals. In an embodiment of the connector, there are multiple ARINC 429 channels yielding multiple data lines. The connector is capable of employing the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 Zigbee wireless protocol that enables automatic communication, development software and 250 kbps RF data rate. Thus, the connector can provide a low powered transmission with relatively low signal latency.
Infrared light is capable of being transmitted over a wide spectrum range, extending from approximately 700 nm to 1 mm, corresponding to a frequency range of approximately 430 THz down to 300 GHz. Most infrared transceivers operate on the Universal Asynchronous Receive Transmit (UART) protocol with a standard serial communication speed of approximately 115 kb/s. This makes infrared the ideal medium for this application, because the power requirements are low, it is relatively inexpensive to produce, and it requires minimal processing circuitry.
An alternative embodiment of a pinless connector is shown in
This pinless connector is very versatile and a viable alternative to regular connectors containing pins. It can be fabricated from a variety of materials, from plastics to metal, depending on the type of application in which it will be implemented. It can be used in a variety of commercial applications to replace USB ports, video and audio connectors and the like where the frequent plugging and unplugging of equipment bends and breaks the pins of normal connectors. Moreover, this technology is not limited to a separate connector application. It may be implemented inside a piece of communications equipment to connect various modules, or any other application where communications signals are to be transmitted between two pieces of electronic equipment
The above description is that of current embodiments of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims.