1. Field of the Invention
The present invention relates to a pipe bender, and more particularly to a pipe bender capable of bending different sized pipes.
2. Description of the Prior Art
Manual pipe benders are not only complicated in structure but also difficult to operate. Conventional manual benders are either electrically or hydraulically driven, and needs to be operated by two hands.
One of the conventional manual pipe benders is a T-shaped structure formed by a longitudinally extending handle and a transversely extending fixing plate fixed on the handle. When in use, the pipe to be bent is pressed against two support members at two ends of the fixing plate, and then the handle is pushed to use a rack to push the pipe until it is bent.
The problem is that the distance between the two support members at two ends of the fixing plate is adjusted by eye based on the user's experience, or based on the scale on the fixing plate, so that the adjustment is time consuming. Furthermore, when the bending is done, a press portion should be used to push the rack back to its original position. However, the pipe bender needs to be operated by two hands, and the position of the press portion requires the user to hold the pipe bender with one hand and to press the press portion with another hand, which makes the operation inconvenient.
The present invention has arisen to mitigate and/or obviate the afore-described disadvantages.
The primary objective of the present invention is to provide a pipe bender which is provided with two adjustment members which are movable along the stationary member to adjust the distance therebetween and can be positioned with respect to the stationary member.
Another objective of the present invention is to provide a pipe bender which is provided with a return member, the return member is located at the rear of the body and adjacent to the gripping portion, when bending of the pipe is finished, the user can repeatedly press the return member with easy to return the movable member back to its original position.
Yet, another objective of the present invention is to provide a pipe bender, wherein the rack of the movable member has a relatively long length to increase the travel length of the movable member, so that the pipe can be bent 90 or 180 degrees.
To achieve the above objective, a pipe bender in accordance with the present invention comprises: a body, a movable member, a return member, a stationary member, two adjustment members, two transverse positioning assemblies, two longitudinal positioning assemblies and a bending member. The movable member is disposed in the body, and an elastic member has two ends fixed to the movable groove and the body, respectively. A drive member and the return member are pivoted to the interior of the body, and the return member has an engaging tooth and the drive member has a toothed portion engaged with the rack of the body. The stationary member is fixed to the support portion of the body and arranged in a T-shaped manner with respect to the movable member. The two adjustment members are movably mounted at two ends of the stationary member to adjust a distance therebeetween. A rotary block is fixed at the top of each of the adjustment members, and then the pipe bending member is mounted on the movable member.
The present invention will be clearer from the following description when viewed together with the accompanying drawings, which show, for purpose of illustrations only, the preferred embodiment in accordance with the present invention.
Referring to
The body 20 includes a gripping portion 21, a support portion 23 formed at one end of an outer surface of the body 20, and a drive member 24 disposed inside the body 20. In the body 20 is formed an engaging groove 22. The support portion 23 is formed with a lock hole 230. The drive member 24 is provided at one end thereof with a toothed portion 240. A reciprocating member 241 has one end connected to the drive member 24 and another end engaged in the engaging groove 22, so that the drive member 24 can be pushed back to its original position automatically after being pressed.
The movable member 30 is disposed in the body 20 and provided with a movable groove 31, a rack 32 and an assembling portion 33. In the movable groove 31 is formed a fixing hole 310. An elastic member 34 is fixed in the fixing hole 310 by a fastener T in such a manner that two ends of the elastic member 34 are fixed to the fixing hole 310 of the movable groove 31 and a restricting portion 25 formed on an inner surface of the body 20. On the assembling portion 33 is formed an assembling hole 330.
The return member 40 is pivoted to the interior of the body 20 and provided with a pull portion 41 and an engaging tooth 42 which are located at two ends of the return member 40, respectively. The pull portion 41 is exposed out of the body 20, and the engaging tooth 42 is engaged with the rack 32 of the movable member 30 to allow the return member 40 pivot in a unidirectional manner.
The stationary member 50 is provided with a lock hole 51 aligned with the lock hole 230 of the support portion 23, then a fastener T2 is inserted in the lock holes 230, 51 to fix the stationary member 50 to the support portion 23 of the body 20. The stationary member 50 is provided with a plurality of transverse holes 52, a plurality of longitudinal holes 53 and an indication portion 54 capable of indicating size and position.
The adjustment members 60 each include an insertion hole 61, a transverse hole 62, a longitudinal hole 63 and a rotary block 64. The adjustment members 60 are mounted at two ends of the stationary member 50 via the insertion hole 61. The transverse and longitudinal positioning assemblies 70, 80 are disposed in the transverse and longitudinal holes 62, 63, respectively. The rotary block 64 is fixed at the top of each of the adjustment members 60, and the rotary block 64 is formed with a pipe groove 640 for holding a pipe T1. The transverse holes 62, 52 of the adjustment member 60 and the stationary member 50 are located corresponding to the indication portion 54 of the stationary member 50.
The transverse positioning assemblies 70 each include a rod 71, a positioning element 73 (which can be a ball) and an elastic member 72 disposed between the rod 71 and the positioning element 73. The positioning element 73 is disposed in the transverse hole 62 of a corresponding one of the adjustment members 60, since the transverse hole 62 is located corresponding to the stationary member 50, the adjustment member 60 can be preliminarily positioned with respect to the stationary member 50.
The longitudinal positioning assemblies 80 each include a rotary member 81, a pull member 82, a first positioning unit 83 and a second positioning unit 84. The rotary member 81 is provided with a plurality of engaging recesses 810. The pull member 82 is formed with a gap 820 in which the rotary member 81 and the first positioning unit 83 are to be disposed. The rotary member 81 is pivoted to the gap 820 of the pull member 82.
The first positioning unit 83 is provided with an elastic member 830 connected to a positioning member 831 (can be a ball) which can be disposed in any of the engaging recesses 810. The second positioning unit 84 is provided with a tenon 840 connected to an elastic member 841 and disposed in the rotary member 81. The tenon 840 has one end disposed in the longitudinal hole 63 of a corresponding one of the adjustment members 60, so as to enable the adjustment member 60 to be further positioned with respect to the stationary member 50.
The pipe bending member 90 is provided with an insertion hole 91 for insertion of the assembling portion 33 of the movable member 30, and a pipe holding groove 92 to be aligned with the pipe groove 640 of the rotary block 64.
The movable member 30 is movably disposed in the body 20 and able to move back and forth. The elastic member 34 has two ends fixed in the movable groove 31 and the body 20, respectively. The drive member 24 is pivoted to the interior of the body 20, and has the toothed portion 240 engaged with the rack 32 of the movable member 30. The reciprocating member 241 has two ends engaged in the drive member 24 and the engaging groove 22 of the body 20, respectively.
The return member 40 is pivoted to the interior of the body 20 and has the engaging tooth 42 engaged with the rack 32 of the movable member 30, and the pull portion 41 is exposed out of the body 20. The stationary member 50 is fixed in the lock holes 230, 51 by the fastener T2, so that the stationary member 50 is fixed to the support portion 23 of the body 20 and arranged in a T-shaped manner with respect to the movable member 30. The adjustment members 60 are mounted at two ends of the stationary member 50, the transverse and longitudinal positioning assemblies 70, 80 are disposed in the transverse and longitudinal holes 52, 5362, 63, respectively, so that the adjustment members 60 can be moved along or fixed with respect to the stationary member 50. The rotary block 64 is fixed at the top of each of the adjustment members 60, the pipe bending member 90 is sleeved onto the assembling portion 33 of the movable member 30 via the insertion hole 91, and then the pipe T1 is placed in the pipe holding groove 92 and the pipe groove 640.
Referring then to
Referring then to
Referring then to
When the distance adjustment is finished, the user can pull upward the pull member 82, so that the positioning member 831 of the first positioning unit 83 will be pushed into the engaging recesses 810 in the lateral surface of the rotary member 81 by the elastic member 830, and the tenon 840 of the second positioning unit 84 will be pushed by the elastic member 841 into the longitudinal hole 63 of the adjustment member 60. Meanwhile, the positioning member 73 of the corresponding one of transverse positioning assemblies 70 will be pushed back into the transverse hole 62 by the elastic member 72.
Since the transverse holes 62, 52 of the adjustment member 60 and the stationary member 50 are located corresponding to the indication portion 54 of the stationary member 50, with the cooperation of the positioning member 73 of the transverse positioning assembly 70 and the indication portion 54 of the stationary member 50, the adjustment member 60 can be preliminarily positioned with respect to the stationary member 50.
Referring then to
The pipe bender 10 of the present invention has the following merits:
Firstly, the distance between the two adjustment members 60 is adjustable to fit different sized pipes, and with the cooperation of the positioning member 73 of the transverse positioning assembly 70 and the indication portion 54 of the stationary member 50, the adjustment member 60 can be preliminarily positioned with respect to the stationary member 50.
On the other hand, the user can hold the pipe bender 10 with one hand gripping the gripping portion 21, the return member 40 is located at the rear of the body 20 and adjacent to the gripping portion 21, when bending of the pipe is finished, the user can repeatedly press the return member 40 with easy to return the movable member 30 back to its original position.
Furthermore, the pipe bending member 90 is replaceable to fit different sized pipes, and the elastic member 93 enables the restricting member 94 to be partially pushed out of or back into the assembling hole 330, which makes the assembling or disassembling of the pipe bending member 90 more easier.
Finally, the rack 32 of the movable member 30 has a relatively long length to increase the travel length of the movable member 30, so that the pipe can be bent 90 or 180 degrees.
While we have shown and described various embodiments in accordance with the present invention, it is clear to those skilled in the art that further embodiments may be made without departing from the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
4989441 | Wagner | Feb 1991 | A |
5761950 | Chiu | Jun 1998 | A |
6931908 | Mitson | Aug 2005 | B1 |
7412867 | Boulin | Aug 2008 | B2 |
9144835 | Houle | Sep 2015 | B2 |
9162273 | Chiu | Oct 2015 | B1 |