Not Applicable.
This invention relates to the field of joining of pipes in the oil and gas industry, pipeline construction, maritime, ship building, plumbing, air conditioning, food processing and other related industries. The field of joining of pipes has seen relatively few advances in the connection of pipes in relative terms of improved performance, leak prevention, and cost and time to complete the joining of pipes and to prevent fluid leakage. Prior devices and methods to join pipes have limitations in terms of installation time, seal performance, and costs which are directly related to pipe size, pipe material, fluid contents, line pressure, environment, equipment and required labor skills, installation time, and joint testing. This invention obviates the limitations of prior devices and methods to join pipes of different sizes, fluid contents and line pressures in all industries with faster and safer installation, improved joint integrity and longevity against corrosion and leaks at lower costs.
The object of this pipe coupling invention with internal multi-combed self-pressurizing seals and integral pipe fastening system is to obviate the disadvantages of other devices and methods currently used to join pipes in all industries, and to provide a device and method to join pipes of all sizes, fluid contents, and line pressures with improved ease and speed of installation, improved join integrity and longevity, prevent fluid leakage under line pressure, reduce safety and environmental hazards, and lower installation costs to join pipes and overall costs of pipeline system costs.
This self-sealing pipe coupling embodies internal self-pressurizing seals and an integral pipe fastening system that replaces welding, compression clamps, bolted flange assemblies, and other devices and methods to join pipes of all sizes, fluid contents, and line pressures with improved ease and speed of installation, improved join integrity and seal longevity, reduces safety and environmental hazards, prevents fluid leakage under line pressure, and lower costs to join pipes and overall pipeline system costs. Two (2) self-pressurizing seals are installed in recessed seal grooves located at opposite outside edges of the pipe coupling body and as each pipe section is inserted into the coupling the pliable sealing surface comprising multiple combed and conjoined fingers fold upwardly and inwardly to protect the sealing surface from damage. The seal, which is manufactured of non-corrosive and fire-resistant materials, embodies a unidirectional fluid orifice that directs escaping fluid into an internal pressure responsive chamber wherein trapped fluid causes outward expansion of the external sealing surface which is comprised of multiple combed and conjoined fingers which form a series of redundant pliable seals to oppose the outward flow of fluids from the pipe juncture with correspondingly greater force.
Technical Problem
Welding is currently used to join larger pipe sizes, generally 10.1 cm or larger diameter pipes which exceed 152.4 cm” in diameter. The welding process is labor intensive, time consuming and is hazardous to personnel and the environment. The welding process requires specialist equipment and skilled labor, and contributes to almost half the average cost of total pipeline construction and represents a substantial cost to join pipes in all other industries. Installation time and costs to join pipes escalates according to the installation environment, size of pipes to be joined, setup time required prior to welding, pipeline fluid contents and line pressure.
Welding requires non-destructive testing to examine the welding seam for pin holes inherent in the welding process, which is time consuming, labor intensive and costly. Fluid system tests are typically conducted between pumping stations which leaves pipelines exposed to damage, sabotage, and piracy.
The welding process leads to eventual joint corrosion and leaks due to exterior and interior corrosion at the welded pipe join seam. The welding process burns away the protective coating of the pipe end. Interior corrosion of pipe joins can be caused by exposed metal to tiny pinholes in the seam, corrosive fluid contents such as heavy crude oil and certain gases, which leads to eventual fluid leakage and environmental damage, costly repair and restoration. Repair of leaking or damaged pipes requires system shut-down, degassing, cutting, and welded replacement of pipe sections which is a time consuming, labor intensive, dangerous, and expensive process.
The joining pipes using compression devices and seals with ‘O’ rings or compression sleeves is limited to smaller sizes and lower line pressures. These seals are prone to damage and dislodgement during pipe insertion, movement during the compression process, and “O” ring seal tend to move axially around the pipe surface in outward direction as line pressure increases.
Bolted flange assemblies used to join pipes are relatively heavy, require additional space and structural support, and require more labor and equipment to install which increases costs and extends time to completion of installation. In the ship construction bolted flange pipe connections add several thousand tons to completed vessel displacement thereby reducing cargo capacity, fuel consumption, and increasing costs of vessel operation.
Solution to Problem
This pipe coupling invention with internal self-pressurizing seals and integral pipe fastening system obviates the disadvantages, limitations and costs of other welded and non-welded methods to join pipes of all sizes, fluid contents and line pressures. The pipe coupling embodies two (2) recessed seal grooves located at the opposite outer edges of the coupling body in which the resilient non-corrosive and fire resistant self-pressurizing seal is installed, an internal pressure responsive chamber and pliable sealing surface of multiple, pliable and conjoined ridges that form a series of redundant circumferential seals around the circumferential surface of pipe to stop the outward flow of fluids from the pipe juncture in the coupling under pressures in excess of 600 BAR.
This pipe coupling invention with internal self-pressurizing seals and integral pipe fastening system does not require pre-welding setup thereby eliminating costly set-up, equipment and labor costs.
This pipe coupling invention with internal self-pressurizing seals and integral pipe fastening system does not require non-destructive testing and an open trench, as pipe connections using this coupling can be tested immediately after pipe connection in the coupling, thereby eliminating excessive equipment, labor, time and costs and provides for immediate trench back-fill to lower the risk of damage, sabotage, or piracy.
Advantageous Effects of Invention
This pipe coupling invention with internal self-pressurizing seals and integral pipe fastening system provides significant advantages in terms of installation speed, sealing performance, installation costs, and overall time and costs of completed pipeline systems of all pipe sizes, fluid contents, and line pressures, including above ground, below ground, or undersea installations, by replacing the slow, labor intensive and costly welding process to join large pipes ranging in size from 10.16 cm to more than 152.4 cm in diameter, and to replace welding, brazing, leading, adhesives, compounds, liquids, and external clamping and internal compression devices used to join smaller diameter pipes in other industries. This self-pressurizing seal provides significantly faster installation, lowers safety and environmental hazard risks, at substantially lower costs than prior devices and methods.
This pipe coupling with its internal multi-combed self-pressurizing seals and integral fastening system has been tested by government sanctioned testing facilities to pressures that exceed 8,702 PSI or 600 BAR.
The invention is described in further detail with reference to the drawings which represent the embodiments of the invention. Structural details are illustrated only for fundamental understanding of the invention.
The invention will now be described in further detail to the accompanying drawings, which represent by example embodiments of the invention. Structural details are shown only as far as necessary for a fundamental understand thereof. The described example, together with the accompanying drawings, will make apparent to those skilled in the art and field how further forms of the invention may be realized.
The pipe coupling body manufactured of either ferrous or non-ferrous material and consists of three (3) integral fastening blocks with three (3) high tensile bolts and seals which secure each opposite pipe section within the pipe coupling. The inventions two (2) self-pressurizing seals are installed in recessed seal grooves located at opposite outside edges of the pipe coupling body. The seal is manufactured of non-corrosive and fire-resistant materials and embodies a unidirectional fluid orifice that directs escaping fluid into an internal pressure responsive chamber wherein the trapped fluid causes outward expansion of the external sealing surface, comprised of multiple combed and conjoined fingers and fluid pockets which form a series of redundant pliable seals to oppose the outward flow of fluids from the pipe juncture with correspondingly greater force.
In
In
Provisional application No. 61/183,633, filed on Jun. 3, 2009
Number | Date | Country | |
---|---|---|---|
61183633 | Jun 2009 | US |