The present invention relates to power tools and, more specifically, to battery-powered pipe cutters.
Manually-operated pipe cutters perform cutting operations in various ways, such as with sawing motions or by successive ratcheting of a pipe cutter knife through a pipe. Oftentimes, these methods of pipe cutting result in imperfect cuts or, when cutting a pipe of a material such as PVC, snapping of the pipe. Manually-operated pipe cutters also cause ergonomic difficulties for the user. In particular, a user having a relatively small hand size or low hand or wrist strength may experience difficulty completing a pipe cut. Additionally, the use of manually-operated pipe cutters can be time consuming.
Embodiments of the invention provide a power tool that includes a pipe holder, a knife or knife pivotally coupled to the pipe holder, and a drive mechanism coupled to at least one of the pipe holder and the knife. The power tool also includes a motor coupled to a drive mechanism, and a removable and rechargeable battery pack coupled to the motor to selectively power the motor for operating the drive mechanism. The power tool also includes a controller configured to monitor a plurality of conditions of the power tool, such as battery pack voltage, battery pack temperature, operational current, and the like. The controller is also configured to detect one or more events related to the plurality of conditions of the power tool. For example, the controller is configured to monitor the operational current of the power tool. If the operational current of the power tool exceeds a first threshold value, a duty cycle of power signals sent to, for example, the motor, is reduced from a first duty cycle value to a second duty cycle value to limit the amount of torque the power tool is able to generate.
In one embodiment, the invention provides a power tool that includes a pipe holder, a knife pivotally coupled to the pipe holder, and a drive mechanism coupled to at least one of the pipe holder and the knife. The drive mechanism is operable to move at least one of the pipe holder and the knife relative to the other of the pipe holder and the knife. A motor is coupled to the drive mechanism, and a power supply is electrically coupled to the motor. The motor receives a power signal with a duty cycle having a first value. A controller is configured to monitor at least one condition of the power tool and detect at least one event associated with the at least one condition. The power signal duty cycle is modified from the first value to a second value when the controller detects the at least one event associated with the at least one condition of the power tool.
In one embodiment, the invention provides a method for operating a power tool. The method includes selectively providing a power signal having a power signal duty cycle to a motor for driving a drive mechanism, supporting a pipe in a pipe holder, and operating the drive mechanism to move a knife relative to the pipe holder to cut the pipe. The method also includes monitoring at least one condition of the power tool, detecting at least one event associated with the at least one condition of the power tool, and modifying the power signal duty cycle from a first value to a second value when the at least one event associated with the at least one condition of the power tool is detected.
In another embodiment, the invention provides a power tool that includes a housing assembly supporting a motor and a drive mechanism, a pipe holder coupled to the housing assembly and configured to support a pipe, and a knife pivotally coupled to the pipe holder. A battery or battery pack is coupled to the housing assembly, and is electrically coupled to the motor to selectively power the motor to drive the drive mechanism. The drive mechanism is operable to move the knife relative to the pipe holder to cut the pipe that is supported by the pipe holder. The motor receives a motor power signal with a first duty cycle value. A controller is configured to monitor at least one condition of the power tool, and to detect at least one event associated with the at least one condition of the power tool. The first duty cycle value is reduced to a second duty cycle value when the controller detects the at least one event.
In yet another embodiment, the invention provides a pipe cutter that includes a housing assembly, a pipe holder coupled to the housing assembly, and a knife pivotally coupled to the pipe holder. The knife and the pipe holder define a slot for receiving a pipe. A drive mechanism is positioned at least partially within the housing assembly and is coupled to at least one of the pipe holder and the knife. The drive mechanism is operable to move the at least one of the pipe holder and the knife relative to the other of the pipe holder and the knife to cut the pipe positioned within the slot. A motor is positioned at least partially within the housing assembly and is coupled to the drive mechanism. A battery pack is removably coupled to the housing assembly, and is electrically coupled to the motor to selectively power the motor to operate the drive mechanism. A controller is configured to control a power signal, monitor at least one condition of the pipe cutter, and detect at least one event associated with the at least one condition of the pipe cutter. The controller modifies a duty cycle value of the power signal when the controller detects the at least one event.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
Embodiments of the invention described herein related to a power tool that includes a pipe holder, a knife pivotally coupled to the pipe holder, and a drive mechanism coupled to at least one of the pipe holder and the knife. The power tool also includes a motor coupled to a drive mechanism, and a removable and rechargeable battery pack coupled to the motor to selectively provide power signals to the motor. A power tool controller is configured to monitor a plurality of conditions of the power tool, such as battery pack voltage, battery pack temperature, operational current, and the like, as well as detect one or more events related to the plurality of conditions of the power tool. For example, the controller is configured to monitor the operational current of the power tool, and if the operational current of the power tool exceeds a first threshold value, a power signal duty cycle is reduced from a first duty cycle value to a second duty cycle value to limit the amount of torque the power tool is able to generate.
The pipe cutter 10 includes a housing assembly 14, a motor and a drive mechanism (
In some embodiments, the pipe cutters 10, 10B may include drive mechanisms configured to quickly return the knives 30, 30B of the pipe cutters 10, 10B to an open position. For example, the pipe cutters 10, 10B may include one of the drive mechanisms illustrated and described in International Patent Application Publication No. WO2009/006588, entitled “PIPE CUTTER”, filed Jul. 3, 2008, the entire contents of which is hereby incorporated by reference.
In other embodiments, the pipe cutters 10, 10B may include wire cutting mechanisms configured to cut a pipe. For example, the pipe cutters 10, 10B may include one of the wire cutting mechanisms illustrated and described in International Patent Application Publication No. WO2009/006596, entitled “PIPE CUTTER”, filed Jul. 3, 2008, the entire contents of which is hereby incorporated by reference.
In some embodiments, the pipe cutters 10, 10B may include a cutting mechanism or knife with an angled blade for cutting a pipe. For example, the pipe cutters 10, 10B may include one of the knives or cutting mechanisms illustrated and described in International Patent Application Publication No. WO2010/009480, entitled “PIPE CUTTER”, filed Sep. 1, 2009, the entire content of which is hereby incorporated by reference.
The illustrated pipe cutter 10 includes an internal casing 116 positioned within the forward portion 22 and the handle portion 42 of the housing assembly 14 shown in
In the illustrated embodiment, the handle portion 42 of the housing assembly supports a battery 138, a motor 146, and a drive mechanism 150 (
The battery 138, or power supply, is removably coupled to the handle portion for providing power to the motor 146. In the illustrated embodiment, the battery 138 extends from a rearward end of the handle portion when coupled to the pipe cutter 110. The battery 138 is coupled to the pipe cutter 110 via, for example, insertion, sliding, snapping, rotating, or other coupling techniques. In other embodiments, the battery 138 is a dedicated battery contained (e.g., partially or entirely housed) within the pipe cutter 110. When coupled to the handle portion, the battery 138 provides power directly to the motor 146 or may power the motor 146 through a control circuit (not shown). The control circuit controls various aspects of the pipe cutter 110, the motor 146, and/or the battery 138 and may also monitor operation of the pipe cutter 110 and its components.
As shown in
In the illustrated embodiment, the casing 116 supports the cutting gear assembly 158, a knife 130, and a pipe holder 126. The cutting gear assembly 158 is driven by the drive assembly 154 and operates to control cutting motion of the knife 130, which performs the cutting action of the pipe cutter 110. The knife 130 includes a blade 166 having a cutting edge and is pivotally movable relative to the housing assembly 14 (
In the illustrated embodiment, the pipe holder 126 includes a cover 174 that forms an exterior portion of the pipe cutter 110 and houses various mechanical and/or electrical components of the pipe cutter 110. The cover 174 may be integrally formed with the housing assembly 14, may be removably coupled to the forward portion 22, or may be permanently coupled to the forward portion 22. The cover 174 may be formed from a hard plastic material, a metal material, and/or any other material or combination of materials suitable for housing the various components of the pipe cutter 110. In the illustrated embodiment, the cover 174 is coupled to the forward portion 22 of the housing assembly 14 and the pipe holder 126. The portion of the cover 174 that is coupled to the holder 126 is formed with a curved surface of the same shape as the curved surface 170 of the pipe holder 126 such that the pipe holder 126 and the cover 174 cooperate to support a pipe during the cutting motion.
The cutting gear assembly 158 is coupled to and driven by the drive assembly 154 to pivot the knife 130 of the pipe cutter 110. The cutting gear assembly 158 may include various numbers of gears in various configurations. Referring to
The second gear 182 includes a spline 186, or spur gear, that extends outward from a rear face 190 of the second gear 182. The spline 186 may be integrally formed with the second gear 182 or may be separately coupled to the second gear 182. The spline 186 includes a toothed portion 194 and a non-toothed portion 198. The spline 186 may include teeth formed on less than half of the circumference of the spline 186. In the illustrated embodiment, the teeth are formed on approximately 90° of the spline 186 circumference, which will result in the knife 130 pivoting 90° during the cutting motion, as discussed below. In embodiments in which the knife 130 pivots less than 90°, the teeth are formed on less than 90° of the spline 186 circumference. Alternatively, in embodiments in which the knife 130 pivots more than 90°, the teeth are formed on more than 90° of the spline circumference.
The cutting gear assembly 158 includes a third gear 202, which is a driven gear that causes the cutting motion of the knife 130. In the illustrated embodiment, the third gear 202 intermeshes with and is driven by the toothed portion 194 of the spline 186; however, the non-toothed portion 198 of the spline 186 does not engage the third gear 202.
Referring to
In a further embodiment, the spline 186 is fully toothed (e.g., a full spur gear) and the knife 130 may be returned to the initial position, or the first position, by other means than the spring, such as by reversing the motor 146.
During operation of the pipe cutter 110, a user positions a pipe in the slot 134 such that the pipe rests on the curved surface 170 of pipe holder 126. A user electrically couples the power supply 138 to the motor 146 (e.g., by actuating a switch assembly or circuit) to power the motor 146 and, thereby, drive the drive assembly 154. The drive assembly 154 intermeshes with and drives the first gear 178 of the cutting gear assembly 158, which rotates the second gear 182. As the second gear rotates 182, the spline 186 also rotates. When the toothed portion 194 of the spline 186 engages the third gear 202, the third gear 202 rotates to pivot the knife 130.
As the third gear 202 rotates, the knife 130 pivots toward the pipe holder 126 such that the blade 166 of the knife 130 cuts through a pipe (not shown) positioned in the slot 134. The pivot range of the knife 130 corresponds to the arc length of the toothed portion 194 on the spline 186. In the illustrated embodiment, after the toothed portion 194 of the spline 186 rotates past the third gear 202, the knife 130 will have completed the pipe cut and cutting motion. When the non-toothed portion 198 of the spline 186 is adjacent to the third gear 202, the spline 186 and the third gear 202 do not engage such that the spring 210 biases the knife 130 away from the pipe holder 126 to the first position. The knife 130 is then in position for the next cutting operation.
The illustrated battery pack 138 includes a casing 300, an outer housing 304 coupled to the casing 300, and a plurality of battery cells 308 (
The casing 300 and power terminals 316 substantially enclose and cover the terminals of the pipe cutter 110 when the pack 138 is positioned in the recess. That is, the battery pack 138 functions as a cover for the recess of the pipe cutter 110. Once the battery pack 138 is disconnected from the pipe cutter 110 and the casing is removed from the recess, the battery terminals of the pipe cutter are generally exposed to the surrounding environment.
The outer housing 304 is coupled to an end of the casing substantially opposite the end cap 312 and surrounds a portion of the casing 300. In the illustrated construction, when the casing 300 is inserted into or positioned within the corresponding recess in the pipe cutter 110, the outer housing 304 generally aligns with an outer surface of the pipe cutter 110. In this construction, the outer housing 304 is designed to substantially follow the contours of the pipe cutter 110 to match the general shape of the housing 14. In such embodiments, the outer housing 304 generally increases (e.g., extends) the length of the handle portion of the pipe cutter 110.
In the illustrated embodiment, two actuators 320 (only one of which is shown) and two tabs 324 are formed in the outer housing 304 of the battery pack 138. The actuators 320 and the tabs 324 define a coupling mechanism for releasably securing the battery pack 138 to the pipe cutter 110. Each tab 324 engages a corresponding recess formed in the pipe cutter 110 to secure the battery pack 138 in place. The tabs 324 are normally biased away from the casing 300 (i.e., away from each other) due to the resiliency of the material forming the outer housing 304. Actuating (e.g., depressing) the actuators 320 moves the tabs 324 toward the casing 300 (i.e., toward each other) and out of engagement with the recesses such that the battery pack 138 may be pulled out of the recess and away from the pipe cutter 110. Such an arrangement allows a user to quickly remove the battery pack 138 from the pipe cutter 110 for recharging or replacement without the use of tools. In other embodiments, the battery pack 138 includes other suitable coupling mechanisms to releasably secure the battery pack 138 to the pipe cutter 110.
As shown in
The battery pack 138 powers a plurality of components of the pipe cutter 110 including a pipe cutter controller 400 illustrated in
The pipe cutter controller 400 includes, for example, a printed circuit board (“PCB”). The PCB (not shown) is populated with a plurality of electrical and electronic components which provide operational control and protection to the pipe cutter 110. In some embodiments, the PCB includes a control or processing unit such as a microprocessor, a microcontroller, or the like. In some embodiments, the controller 400 includes the processing unit, a memory, and a bus. The bus connects various components of the controller 400 including the memory to the processing unit. The memory includes, in many instances, read only memory (“ROM”) such as an electrically erasable programmable read-only memory (“EEPROM”) and random access memory (“RAM”). The controller 400 also includes an input/output system that includes routines for transferring information between components within the controller 400. Software included in the implementation of the pipe cutter 110 is stored in the memory of the controller 400. The software includes, for example, firmware applications and other executable instructions. In other embodiments, the controller 400 can include additional, fewer, or different components.
The PCB also includes, among other things, a plurality of additional passive and active components such as resistors, capacitors, inductors, integrated circuits, and amplifiers. These components are arranged and connected to provide a plurality of electrical functions to the PCB including, among other things, filtering, signal conditioning, and voltage regulation. For descriptive purposes, the PCB and the electrical components populated on the PCB are collectively referred to herein as “the controller” 400. The controller 400 receives signals from the sensors or components within the pipe cutter 110, conditions and processes the signals, and transmits processed and conditioned signals to, for example, the motor, the fuel gauge, etc.
In some embodiments, a battery pack controller (not shown) provides information to the pipe cutter controller 400 through, for example, the battery pack control module 416, related to a battery pack temperature or voltage level. The pipe cutter controller 400 and the battery pack controller also include low voltage monitors and state-of-charge monitors. The monitors are used by the pipe cutter controller 400 or the battery pack controller to determine whether the battery pack 138 is experiencing a low voltage condition, which may prevent proper operation of the pipe cutter 110, or if the battery pack 138 is in a state-of-charge that makes the battery pack 138 susceptible to being damaged. If such a low voltage condition or state-of-charge exists, the pipe cutter 110 is shut down or the battery pack 138 is otherwise prevented from further discharging current to prevent the battery pack 138 from becoming further depleted.
With reference to
In the described embodiment, the first threshold voltage level is 9.6V. If the battery pack voltage is not greater than (i.e., less than) the first battery pack voltage threshold value, a first LED flash timer is set (step 512), the power FET is turned off (step 516), and one or more fuel gauge LEDs are flashed (step 520). After the fuel gauge LED flashing is initiated, the first LED flash timer is evaluated (step 524). If the first LED flash timer is less than a first LED flash timer threshold value such as, for example, 3.0 seconds, the fuel gauge LED continues to flash. If the first LED flash timer is greater than or equal to 3.0 seconds, the control process 450 proceeds to control section A shown in and described with respect to
Returning to step 508, if the battery pack voltage is greater than the first battery pack threshold level, the battery pack temperature is measured (step 528). The measured pack temperature is compared to a first battery pack temperature threshold value (step 532). The first battery pack temperature threshold value is in the range of, for example, 60-90° C. In other embodiments, the first battery pack temperature threshold value is greater than 90° C. or less than 60° C. In the described embodiment, the first battery pack temperature threshold value is 75° C. If the battery pack temperature is greater than the first battery pack temperature threshold value, a second LED flash timer is set (step 536), the power FET is turned off (step 540), and the fuel gauge LEDs are flashed (step 544). After the fuel gauge LEDs begin flashing, the second LED flash timer is evaluated (step 548). If the second LED flash timer is less than a second LED flash timer threshold value such as, for example, 200 ms, the fuel gauge LEDs continue to flash. If the second LED flash timer is greater than or equal to the second LED flash timer threshold value, the control process 450 proceeds to control section A of
If, at step 532, the temperature of the battery pack is not greater than the first battery pack temperature threshold value, the power FET temperature is measured (step 552). The measured FET temperature is compared to a first power FET temperature threshold value (step 556). The first power FET temperature threshold has a value that is generally greater in magnitude than the first battery pack temperature threshold. For example, the first power FET temperature threshold has a value that is, in many instances, greater than 100° C. In the illustrated embodiment, the first power FET temperature threshold value is 110° C., although this value varies with the size of the battery pack, the type of pipe cutter, the brand of the FET, and the characteristics of other circuitry included in the pipe cutter 110. If the power FET temperature is greater than the first power FET temperature threshold value, a third LED flash timer is set (step 560), the power FET is turned off (step 564), and the fuel gauge LEDs are flashed (step 568). After the fuel gauge LEDs begin flashing, the third LED flash timer is evaluated (step 570). If the third LED flash timer is less than a third LED flash timer threshold value such as, 200 ms in the illustrated embodiment, the fuel gauge LEDs continue to flash. If the third LED flash timer is greater than or equal to the third LED flash timer threshold value, the control process 450 proceeds to control section A of
If the power FET temperature is less than the first power FET temperature threshold value at step 556, the control process 450 proceeds to control section B shown in and described with respect to
Following the illumination of the fuel gauge LEDs, the first fuel gauge timer is evaluated (step 594). If the first fuel gauge timer is less than a charge level timer threshold value, such as 2.0 s, the fuel gauge LEDs remains illuminated. If the first fuel gauge timer is greater than or equal to the charge level timer threshold, a worklight (e.g., an LED worklight) (not shown) is turned on or illuminated (step 598), and the control process 450 proceeds to control section D shown in and described with respect to
With reference to
Following the illumination of the worklight at step 598, the control process 450 measures the position of a speed potentiometer (“POT”) (step 602). The speed POT position or value is measured in a variety of ways. For example, the position of the speed POT is measured as a voltage, and the voltage is used to determine the pipe cutter's speed setting. Alternatively, the resistance of the POT is measured to determine the pipe cutter's speed setting. Using either technique, the pipe cutter's speed setting corresponds to the POT's wiper arm position. The value of the speed POT's position is stored in a memory such as the RAM or EEPROM of the controller 400. Based on the speed POT setting, a PWM duty cycle is set (step 604). For example, at a low speed setting, the pipe cutter requires a lower current level and the duty cycle is correspondingly set to a low value (e.g., 15%). If the speed POT setting is set to a high speed, the pipe cutter requires more current, and the duty cycle is correspondingly set to a higher duty cycle (e.g., 75%). Although the illustrated embodiment of the control process 450 shows the setting of the duty cycle as a discrete step in a detailed process, the duty cycle of the power FET is capable of being continuously adjusted during the operation and use of the pipe cutter 110 based on one or more conditions of the pipe cutter 110, as described below with respect to
Following step 604, the controller 400 measures the battery pack voltage (step 608), the battery pack temperature (step 612), the power FET temperature (step 616), the tool current (step 620), and the Hall sensor signal (step 624).
With reference to control section E shown in
If the measured battery pack voltage is not within the comparison range of step 628, the measured battery pack voltage is compared to, for example, the low side of that comparison range (e.g., 6.3V) (step 640). If the measured battery pack voltage is below 6.3V, a second low battery pack voltage timer is incremented (step 644), and the timer is compared to a second low battery pack voltage timer threshold value, such as 90 ms (step 648). The second low battery pack voltage timer threshold value is less than the first low battery pack voltage timer threshold value because a battery pack voltage of less than approximately 6V is dangerously low and is, if persistent, capable of damaging the battery pack. If the low battery pack voltage timer is greater than or equal to the second low battery pack timer, the control process 450 proceeds to control section F of
If the measured battery pack voltage is not less than 6.3V at step 640, the measured battery pack temperature is compared to the first battery pack temperature threshold (e.g., 75° C.) (step 652). If the measured battery pack temperature is greater than the first battery pack temperature threshold, the control process 450 proceeds to control section F of
Following step 656, the controller 400 compares the measured pipe cutter current to a first current threshold value (step 660). The first current threshold value is, for example, 60 A, or another value which is significantly higher than a normal operating current of the pipe cutter 110 (e.g., 20 A). If the measured pipe cutter current is greater the first current threshold value, a first tool high-current timer is incremented (step 664), and the tool timer is compared to a first tool high-current timer threshold value, such as 80 ms (step 668), although other tool high-current timer threshold values are used in other embodiments of the invention. If the first tool high-current timer is greater than or equal to the first tool high-current threshold value, the control process 450 proceeds to control section F of
The first tool high-current timer allows the pipe cutter 110 to operate, at least temporarily, at a very high current draw level without the pipe cutter 110 shutting down. For example, as the pipe cutter 110 is cutting through a pipe, a temporary snag or stoppage of the pipe cutter's knife results, in many instances, in a high torque and current draw until the pipe cutter and knife resume normal operation. For a substantially high current, such as the first current threshold value, the pipe cutter 110 and battery pack 138 are only able to operate at such a current level for a short period of time before damage to the pipe cutter 110 or battery pack 138 occur. Although the control process 450 illustrates the pipe cutter current being measured only once and then proceeding through subsequent control steps, the pipe cutter current is, in many instances, measured continuously or at a very high rate. As such the measured pipe cutter current is frequently updated, and it is possible for the measured pipe cutter current to fall below the first current threshold value after an initial comparison resulted in the pipe cutter current being greater than the first current threshold value.
If, at step 660, the pipe cutter current is less than the first current threshold value, the measured pipe cutter current is compared to a second current threshold value (step 672). The second current threshold value is less than the first current threshold value, but elevated from the typically operating current drawn by the pipe cutter 110. In the illustrated embodiment, the second current threshold value is 30 A. If the measured pipe cutter current is greater the second current threshold value, a second tool high-current timer is incremented (step 676), and the tool timer is compared to a second tool high-current timer threshold value, such as 1.0 second (step 680), although other tool high-current timer threshold values are used in other embodiments of the invention. If the second tool high-current timer is greater than or equal to the second tool high-current timer threshold value, the control process 450 proceeds to control section F of
In a manner similar to that described above with respect to the first tool high-current timer, the second tool high-current timer allows the pipe cutter 110 to operate, at least temporarily, at a higher than normal current draw level without the pipe cutter 110 shutting down. For a measured pipe cutter current that is only slightly higher than a normal operating current, the pipe cutter 110 and battery pack 138 are able to operate for a longer period of time than for a significantly elevated current draw before damage to the pipe cutter 110 or battery pack 138 are likely to occur. Accordingly, the pipe cutter current has a longer period of time to fall below the second current threshold than it does to fall below the first current threshold. Also, as noted above, although the control process 450 illustrates the pipe cutter current being measured only once and then proceeding through subsequent control steps, the pipe cutter current is, in many instances, measured continuously or at a very high rate. As such the measured pipe cutter current is frequently updated, and it is possible for the measured pipe cutter current to fall below the second current threshold value after an initial comparison resulted in the pipe cutter current being greater than the second current threshold value.
With reference to control section G (
If, at step 688, the Hall sensor is active, the power FET is turned off immediately (step 692), the worklight is turned off (step 696), and one fuel gauge LED is activated (step 700). Following step 700, the controller 400 monitors the tool switch for deactivation (i.e., turning off the pipe cutter 110) (step 704). The controller 400 continues to monitor for the deactivation of the tool switch. Until the tool switch is turned off, the power FET is held off (step 708). After the tool switch is turned off, the control process 450 proceeds to control section H shown in and described with respect to
With reference once again to step 684, if the Hall sensor timer is set (typically following step 578 of initialization), the Hall sensor timer is compared to a Hall sensor timer threshold value (step 712). The Hall sensor timer threshold value is generally within the range of 1.0 second to 8.0 seconds, although the Hall sensor timer value is outside of this range in some embodiments of the invention. In the illustrated embodiment, the Hall sensor timer threshold value is 5.0 seconds. If the Hall sensor timer is less than the Hall sensor timer threshold value, the controller 400 evaluates the Hall sensor to determine whether it is active (step 716). If the Hall sensor is not active, or is no longer active, the control process 450 proceeds to control section D described above with respect to
Reference is now made to
With reference to
With continued reference to
In addition to the control process 450 described above, the pipe cutter 110 includes additional controls which enhance the operation of the pipe cutter 110. For example,
When the knife of the pipe cutter 110 is brought into contact with a pipe, the current drawn by the pipe cutter 110 increases to the first peak current value 820A until the pipe cutter 110 splits the pipe. After the pipe cutter 110 splits the pipe, the current draw of the pipe cutter 110 decreases until the knife reaches the opposing side of the pipe. The current drawn by the pipe cutter increases again to the second peak current 82 until the knife completes cutting through the pipe and the current again diminishes. The current levels required at the first peak current level allow the pipe cutter 110 to generate a substantial amount of torque. The torque generated when initially brought in contact with a pipe is, in some instances, sufficient to break gear teeth in the drive mechanism. As such, a current threshold level 828 is established that, when exceeded, causes the controller 400 to reduce the duty cycle from the high or full-speed mode (i.e., 100% duty cycle) to a reduced duty cycle mode (e.g., 50% duty cycle) using pulse width modulation to reduce the loading on the pipe cutter 110 and, therefore, reduce the torque generated by the pipe cutter 110. The operational current of the pipe cutter 110 exceeding the current threshold level is considered an ‘event’ associated with a condition of the pipe cutter 110. The controller 400 is capable of detecting other events, such as a voltage threshold being exceeded, a timer threshold being exceeded, a temperature threshold, being exceeded, a speed threshold being exceeded, a torque threshold being exceeded, and the like.
A transition from the first duty cycle to the reduced duty cycle occurs at point A. After the pipe cutter 110 has initially split one side of the pipe, the duty cycle is increased at point B back to the original 100% duty cycle. The reduction in the duty cycle prevents the pipe cutter 110 from generating a torque that is able to, for example, break gear teeth. The PWM also causes a cyclical drive vibration in the knife of the pipe cutter 110. The vibration in the knife increases the pipe cutter's ability to cut through the pipe while operating at a lower speed and lower torque. The duty cycle control of the pipe cutter 110 is described in greater detail below with respect to
A first voltage, VA, of the battery pack is determined (step 920) when the controller 400 switches the operation of the pipe cutter 110 from the first duty cycle to the second duty cycle. The voltage level of the battery pack determined in step 920 is then stored in a memory of the pipe cutter 110, such as the EEPROM or RAM (step 924). With reference now to
In other embodiments of the invention, the duty cycle of the PWM is controlled in alternative manners to that described above with respect to
As yet another illustrative example, the duty cycle of the PWM is pulsed between the first duty cycle level (e.g., 100%) and a second duty cycle level (e.g., 50%). The operational current of the pipe cutter 110 is again plotted with respect to time, as previously described with respect to
Thus, the invention provides, among other things, a controller for controlling the operation of a battery-powered pipe cutter. The controller executes a control process that includes a plurality of safety tests and evaluations that are used to determine whether the pipe cutter is operating within acceptable operational parameters. The controller also executes a process for reducing the duty cycle of a pulse width modulator to control the output current and torque of the pipe cutter at levels that prevent the pipe cutter from, for example, breaking gear teeth. Various features and advantages of the invention are set forth in the following claims.
This application is a continuation-in-part of International Application PCT/US2008/069188, filed Jul. 3, 2008, and International Application PCT/US2008/069189, also filed Jul. 3, 2008, both of which claim priority to U.S. Provisional Patent Application No. 60/947,706, filed Jul. 3, 2007, the entire contents of which are all hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/055353 | 8/28/2009 | WO | 00 | 1/3/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/025493 | 3/3/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1762392 | Gray | Jun 1930 | A |
1806555 | Gonsett | May 1931 | A |
2220223 | Eerhard et al. | Nov 1940 | A |
2716812 | Noonan | Sep 1955 | A |
2731721 | Traurig | Jan 1956 | A |
2927373 | Taube | Mar 1960 | A |
3052980 | Fieser | Sep 1962 | A |
3105218 | Kozinski | Sep 1963 | A |
3178816 | Schmid | Apr 1965 | A |
3453914 | Lemper et al. | Jul 1969 | A |
3524443 | Batlin | Aug 1970 | A |
3693254 | Salonen | Sep 1972 | A |
3942248 | Sherer et al. | Mar 1976 | A |
4283851 | Wolter | Aug 1981 | A |
4368577 | Babb | Jan 1983 | A |
4434555 | Stoll | Mar 1984 | A |
4549349 | Harrison | Oct 1985 | A |
4608754 | Kloster | Sep 1986 | A |
4747212 | Cavdek | May 1988 | A |
4769911 | Araki | Sep 1988 | A |
4802278 | Vanderpol et al. | Feb 1989 | A |
4989322 | Clayton | Feb 1991 | A |
5002135 | Pellenc | Mar 1991 | A |
5018420 | Plomb | May 1991 | A |
5058272 | Steube | Oct 1991 | A |
5067240 | You | Nov 1991 | A |
5122092 | Abdul | Jun 1992 | A |
5129158 | Campagna | Jul 1992 | A |
5331742 | Schmode et al. | Jul 1994 | A |
5642566 | Hirabayashi | Jul 1997 | A |
5718051 | Huang | Feb 1998 | A |
5758729 | Undin | Jun 1998 | A |
5775539 | Bates et al. | Jul 1998 | A |
5826341 | Massa | Oct 1998 | A |
5829142 | Rieser | Nov 1998 | A |
5836079 | Cronin et al. | Nov 1998 | A |
5909830 | Bates et al. | Jun 1999 | A |
5987754 | Hirabayashi et al. | Nov 1999 | A |
6044564 | Jeltsch | Apr 2000 | A |
6120363 | Dunn | Sep 2000 | A |
6178643 | Erbrick et al. | Jan 2001 | B1 |
6181032 | Marshall et al. | Jan 2001 | B1 |
6260447 | Hutt | Jul 2001 | B1 |
6370780 | Robertson et al. | Apr 2002 | B1 |
6460626 | Carrier | Oct 2002 | B2 |
6467172 | Jenq | Oct 2002 | B1 |
6513245 | Aubriot | Feb 2003 | B1 |
6553670 | Chang | Apr 2003 | B2 |
6626792 | Vranish | Sep 2003 | B2 |
6637115 | Walsh et al. | Oct 2003 | B2 |
6658739 | Huang | Dec 2003 | B1 |
6935031 | Huang | Aug 2005 | B1 |
7013567 | Myers | Mar 2006 | B2 |
7066691 | Doyle et al. | Jun 2006 | B2 |
7116071 | Glasgow et al. | Oct 2006 | B2 |
7152325 | Green | Dec 2006 | B2 |
7157882 | Johnson | Jan 2007 | B2 |
7275469 | Chen | Oct 2007 | B2 |
7293362 | Konen | Nov 2007 | B2 |
7331109 | Tu | Feb 2008 | B2 |
7363711 | Janutin et al. | Apr 2008 | B2 |
7406769 | Toussaint | Aug 2008 | B1 |
7544146 | Vranish | Jun 2009 | B2 |
7578461 | Sederberg et al. | Aug 2009 | B2 |
7601091 | Vranish | Oct 2009 | B2 |
7845080 | Nasiell | Dec 2010 | B2 |
8122797 | Bruurs | Feb 2012 | B2 |
8266991 | Thorson et al. | Sep 2012 | B2 |
8683704 | Scott et al. | Apr 2014 | B2 |
8763257 | Thorson et al. | Jul 2014 | B2 |
20010042631 | Carrier | Nov 2001 | A1 |
20040055164 | Molins | Mar 2004 | A1 |
20040179829 | Phillips | Sep 2004 | A1 |
20050150113 | Shultis | Jul 2005 | A1 |
20050160606 | Yao | Jul 2005 | A1 |
20050200339 | Phillips et al. | Sep 2005 | A1 |
20050274025 | Lin | Dec 2005 | A1 |
20060053633 | Gurri Molins | Mar 2006 | A1 |
20060087286 | Phillips | Apr 2006 | A1 |
20060092674 | Belton et al. | May 2006 | A1 |
20060219039 | Vranish | Oct 2006 | A1 |
20060278057 | Wuertemberger | Dec 2006 | A1 |
20070050984 | Bartoluzzi | Mar 2007 | A1 |
20070214648 | Lazarevic | Sep 2007 | A1 |
20080045374 | Weinberg et al. | Feb 2008 | A1 |
20080201961 | Wu et al. | Aug 2008 | A1 |
20090108806 | Takano et al. | Apr 2009 | A1 |
20090199407 | Lazarevic | Aug 2009 | A1 |
20100018059 | Huang | Jan 2010 | A1 |
20100077621 | Quigley et al. | Apr 2010 | A1 |
20110061242 | Chen et al. | Mar 2011 | A1 |
20130000130 | Maniwa | Jan 2013 | A1 |
20130036614 | Seigneur | Feb 2013 | A1 |
20130055574 | Nie et al. | Mar 2013 | A1 |
20130055575 | Delmas | Mar 2013 | A1 |
20130097873 | Luo et al. | Apr 2013 | A1 |
20140182137 | Liu et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
1301442 | May 1992 | CA |
3105218 | Sep 1982 | DE |
3524443 | Jan 1987 | DE |
202004001665 | Jun 2004 | DE |
1350428 | Oct 2003 | EP |
1525958 | Apr 2005 | EP |
2459829 | Sep 2008 | GB |
55005270 | Jan 1980 | JP |
10000509 | Jan 1998 | JP |
2001204251 | Jul 2001 | JP |
2006018487 | Feb 2006 | WO |
2006096172 | Sep 2006 | WO |
2009006588 | Jan 2009 | WO |
2009006596 | Jan 2009 | WO |
2009006587 | Jan 2009 | WO |
Entry |
---|
PCT/US2008/069188 International Search Report and Written Opinion dated Sep. 30, 2008 (10 pages). |
PCT/US08/69209 International Search Report and Written Opinion dated Oct. 7, 2008 (9 pages). |
PCT/US2008/069189 International Search Report and Written Opinion dated Oct. 14, 2008 (10 pages). |
PCT/US2009/055353 International Search Report and Written Opinion dated Oct. 20, 2009 (7 pages). |
PCT/US2009/055371 International Search Report and Written Opinion dated Oct. 20, 2009 (7 pages). |
Tech Briefs, “Phase-Oriented Gear Systems”, NASA Tech Briefs, Goddard Space Flight Center, Greenbelt, Maryland, available online at: <http://www.techbriefs.com/component/content/article/2425>, Nov. 1, 2007. |
Shelley, Tom, “Armed to the Teeth”, Eureka, available online at: <http://www.eurekamagazine.co.uk/article/13038/Armed-to-the-teeth.aspx>, Feb. 9, 2008. |
Milwaukee Electric Tool, “Milwaukee Introduces New 12-volt Sub-Compact Driver”, News and Media—Press Releases, available online at: <http://www.milwaukeetool.com/NewsAndMedia/PressReleases/Details.aspx? PublicationId=954>, Sep. 20, 2007. |
GB1000846.4—Examination Report dated Jul. 8, 2011 (3 pages). |
GB1000847.2—Examination Report dated Jul. 8, 2011 (3 pages). |
Intellectual Property Office of Great Britain Examination Report for Application No. 1000846.4 dated Nov. 7, 2011, 3 pages. |
Intellectual Property Office of Great Britain Examination Report for Application No. 1000847.2 dated Nov. 7, 2011, 4 pages. |
Intellectual Property Office of Great Britain Examination Report for Application No. 1000847.2 dated Apr. 9, 2013 (5 pages). |
Number | Date | Country | |
---|---|---|---|
20130097873 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
60947706 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2008/069188 | Jul 2008 | US |
Child | 13393131 | US | |
Parent | PCT/US2008/069189 | Jul 2008 | US |
Child | PCT/US2008/069188 | US |