Pipe electropolishing apparatus using an electrolyte heater and cooler

Information

  • Patent Grant
  • 6402908
  • Patent Number
    6,402,908
  • Date Filed
    Wednesday, February 2, 2000
    24 years ago
  • Date Issued
    Tuesday, June 11, 2002
    22 years ago
Abstract
A temperature handling subsystem (12) for a pipe electrochemical polishing system (10) has a chiller (46) and associated heat exchanger (44) for cooling the acid electrolyte (24) circulating through a pipe (28) while a cathode (14) is drawn therethrough for the purpose of electropolishing the interior of the pipe (24). A temperature control method (48) has a temperature low enough decision operation (58) wherein a temperature indicating control (38) is used to determine if the chiller (46) should be activated. The electrolyte (24) is pumped by an electrolyte pump from an electrolyte reservoir (22) containing a temperature indicating controller (38) for determining the temperature of the electrolyte (24) and further containing an electric heater (36) for heating the electrolyte (24), as necessary.
Description




TECHNICAL FIELD




The present invention relates to the field of electrochemical processing, and more particularly to an improved fluid chemical system for the chemical used in the process. The predominant current usage of the present inventive improved fluid system is in the handling of chemical electrolyte used for in place electropolishing, wherein it is desirable to reduce the cumulative temperatures imparted to the fluid electrolyte due to the substantial heat created in the process.




BACKGROUND ART




It is known in the art to deposit and/or remove materials by passing an electric current through a fluid electrolyte which is in contact with a conductive electrode. Materials are exchanged between the electrolyte and the electrode depending upon the direction of current flow and the ionization of materials to be deposited on or removed from the electrode. Electroplating is a well known application of this general method. Electropolishing is also well known in the art. In the electropolishing process, irregularities and deposits on a surface are removed by causing such to be drawn into the electrolyte solution.




In many electrochemical processes, she temperature of the electrolyte can be readily controlled. Since a large quantity of electrolyte is used to immerse the electrode, the temperature of the electrolyte is generally stable, even though heat is introduced in the process. However, recent developments in the art have resulted in “in place” electrochemical processing. An example is the in place electrochemical polishing of a pipe. In such an example, a cathode is drawn through the pipe while an electrolyte solution is simultaneously piped through the pipe. The pipe acts as an anode and is electrochemically polished in the process. Since the electrolyte solution must be continuously pumped through the pipe during the process, it is most practical to recirculate the solution. However, since a significant amount of heat is generated in the process, the electrolyte tends to become overly heated as the process continues. This might not, upon first examination, seem to be a significant problem. Indeed, it is desirable that the electrolyte be heated higher than the ambient temperature. Nevertheless, the inventor has found that, as a practical matter, the electrolyte does become dramatically over heated during many such operations.




Therefore, it would be desirable to have some method and or means for avoiding or, at least, minimizing the undesirable effects caused by the heating of electrolyte during an electrochemical process. While increasing the quantity of electrolyte used is one possible solution, it would be desirable to have an alternative method and/or means which does not have the disadvantage of the additional bulk and additional expense associated with the use of an additional quantity of electrolyte.




DISCLOSURE OF INVENTION




Accordingly, it is an object of the present invention to provide an apparatus and method for reducing the electrolyte temperature during an electrochemical process.




It is still another object of the present invention to provide an apparatus and method for improving an electrochemical process.




It is yet another object of the present invention to provide a method and apparatus for keeping the parameters of an electrochemical process within acceptable tolerances.




It is still another object of the present invention to provide a method and apparatus for reducing the quantity of electrolyte needed during an electrochemical process.




It is yet another object of the present invention to provide a method and apparatus for reducing the time required to accomplish an electropolishing process.




Briefly, a known embodiment of the present invention is an improved in place electropolishing apparatus for polishing a pipe. In an electrolyte handling subsystem, a cooler is provided for cooling a fluid electrolyte as the electrolyte is recirculated through the pipe. Optionally, a temperature sensor controls the operation of the cooler.




An advantage of the present invention is that the temperature of the fluid electrolyte is reduced.




A further advantage of the present invention is that temperature dependant electrical parameters, such as resistance, can be readily kept within acceptable tolerances.




Yet another advantage of the present invention is that a lesser quantity of electrolyte is required, since the fluid electrolyte can be cooled and recirculated.




These and other objects and advantages of the present invention will become clear to those skilled in the art in view of the description of modes of carrying out the invention, and the industrial applicability thereof, as described herein and as illustrated in the several figures of the drawing. The objects and advantages listed are not an exhaustive list of all possible objects or advantages of the invention. Moreover, it will be possible to practice the invention even where one or more of the intended objects and/or advantages might be absent or not required in the application.




Further, those skilled in the art will recognize that various embodiments of the present invention may achieve one or more, but not necessarily all, of the above described objects and advantages. Accordingly, the listed objects and/or advantages are not essential elements of the present invention, and should not be construed as limitations.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is block diagrammatic view of an example of an in place pipe electropolishing system having an electrolyte temperature control system according to the present invention; and





FIG. 2

is a flow diagram showing an example of a electrolyte temperature control method according to the present invention.











DETAILED DESCRIPTION OF THE INVENTION




The embodiments and variations of the invention described herein, and/or shown in the drawings, are presented by way of example only and are not limiting as to the scope of the invention. Unless otherwise specifically stated, individual aspects and components of the invention may be omitted or modified, or may have substituted therefore known equivalents, or as yet unknown substitutes such as may be developed in the future or such as may be found to be acceptable substitutes in the future. The invention may also be modified for a variety of applications while remaining within the spirit and scope of the claimed invention, since the range of potential applications is great, and since it is intended that the present invention be adaptable to many such variations.




Unless otherwise stated herein, component parts of the invention will be familiar to one skilled in the art, and may be purchased or readily manufactured accordingly. Also, of unless otherwise stated herein, substitutions can be made for the components described, and each of the individual components, except as specifically claimed, is not an essential element of the invention.




A known mode for carrying out the invention is an improved electrolyte handling subsystem


10


which is, in this example, as part of an in place pipe electrochemical polishing system


12


. The in place pipe electrochemical polishing system


12


is depicted in a block schematic diagrammatic view in FIG.


1


. As one skilled in the art will recognize, some of the relevant component parts of the in place pipe electrochemical polishing system are a cathode


14


, a cathode puller cable


16


, a cable puller


18


, a valve


20


, a dam


21


, an electrolyte reservoir


22


for containing a supply of an electrolyte


24


, and an electrolyte pump


26


, all of which are provided for the purpose of polishing the interior of a pipe


28


. In the electrochemical polishing process, the cathode


14


is drawn toward the cable puller


18


by the cathode puller cable


16


, while current is applied through the cathode


14


from a power supply


30


. The current flows through the electrolyte


24


in the pipe


28


, which shares a common ground with the power supply


30


such that the pipe


28


acts as an anode and the interior thereof is polished, according to the known principles of electropolishing. A ground wire


31


provides a good ground from the power supply


30


to the pipe


28


. During the process, the electrolyte


24


is pumped to flow through the pipe


28


in a direction


32


opposite that in which the cathode


14


is being drawn. The valve


20


prevents the electrolyte


24


from escaping the pipe


28


while allowing the cathode puller cable


16


to be pulled therethrough.




In the example of the inventive electrolyte handling subsystem


12


, two filters


34


are placed in the path of the electrolyte to insure that particulate matter removed from the inside of the pipe


28


is removed from the electrolyte


24


solution as it is recirculated through the electrolyte handling subsystem


12


by the electrolyte pump


26


. A lesser or greater quantity of the filters


34


could be used, as necessary or desirable according to the application.




In the example of the invention shown in

FIG. 1

, an electric heater


36


and temperature indicating control


38


are provided in the path of the electrolyte


24


. In this example, the electric heater


36


and the temperature indicating control


38


are located in the electrolyte reservoir


22


. Also, in the present example of the invention, a collector sump


40


catches the electrolyte


24


as it flows out of the pipe


28


, and a collector sump pump


42


pumps the electrolyte


24


from the collector sump


40


to the electrolyte reservoir


22


. A heat exchanger


44


is provided in the path of the electrolyte


24


with a chiller


46


operatively connected thereto. The chiller


46


is a conventional refrigeration unit and pump, and the heat exchanger


44


is adapted to transfer heat from the electrolyte


24


in the pipe


28


to the chiller


46


. The application and use of the chiller


46


and the heat exchanger


44


will be discussed in more detail, hereinafter.





FIG. 2

is a flow diagram depicting an example of the inventive electrolyte temperature control method


48


. The method


48


will be described herein with reference both to

FIGS. 1 and 2

. When the pipe electrochemical polishing system


10


is first activated, it is likely that the temperature of the electrolyte


24


will be out of range. One skilled in the art of electropolishing will be familiar with what amounts to an acceptable temperature range for a given application, considering the material of the pipe


28


, the type and concentration of the electrolyte


24


, the current to be provided by the power supply


30


, the speed at which the cathode


14


is to be drawn through the pipe


28


and the like. Normally, the temperature is expected to be low when the system is first turned on. In a temperature high enough decision operation


50


, the temperature indicating control


38


is used to determine if the temperature of the electrolyte


24


is sufficiently high to begin the electropolishing process. When the temperature is low, the electric heater


36


is turned on in a turn on heater operation


52


to raise the temperature of the electrolyte


24


.




It should be noted that each of the operations depicted in the example of

FIG. 2

is accomplished repetitively as long as the electropolishing operation continues. That is, temperatures are checked, operations are performed based upon the result of such check, and then the temperature is checked again, and so on. Accordingly, when the temperature comes within range in the temperature high enough decision operation


50


the heater


36


is turned off in a turn off heater operation


54


and then current is applied to the cathode


14


and the cathode


14


is begun to be drawn through the pipe


28


in a begin/continue polishing operation


56


.




When, in a temperature low enough decision operation


58


, it is determined that the temperature of the electrolyte


24


is not above range the chiller


46


is left off (if already off) or turned off (if on) in a turn off/leave off chiller operation


60


. When, in the temperature low enough decision operation


58


, it is determined that the temperature of the electrolyte


24


is too high, the chiller


46


is turned on (if off) or left on (if already on) go and the electrolyte


24


is cooled by the heat exchanger


44


in a turn on/leave on chiller operation


62


.




It should be noted that the flow diagram of

FIG. 2

is not specific as to whether the operations are automatically controlled or manually initiated. In the example of the invention described, an operator initiates the operations based upon a reading of the temperature indicating controller


38


, although it is anticipated by the inventor that the operations could be placed entirely under computer control or otherwise automated.




Various modifications to the inventive method are also quite possible, while remaining within the scope of the invention. For example, while no provision is made in the example of

FIG. 2

for shutting down the entire procedure should the temperature become exceedingly high, one skilled in the art will recognize that it would be a simple matter to cause the temperature indicating controller


38


to shut down the electropolishing process should the temperature reach some predetermined level higher than that temperature at which the chiller


46


is initially turned on.




It should be noted, as one skilled in the art will recognize, that the electrolyte


24


is an acid and, therefore, all components which come into contact with the electrolyte


24


should be selected to be capable of withstanding the acid. Furthermore, users of the invention should take the appropriate and necessary precautions for handling the electrolyte


24


.




All of the above are only some of the examples of available embodiments of the present invention. Those skilled in the art will readily observe that numerous other modifications and alterations may be made without departing from the spirit and scope of the invention. Accordingly, the disclosure herein is not intended as limiting and the appended claims are to be interpreted as encompassing the entire scope of the invention.




INDUSTRIAL APPLICABILITY




The inventive electrolyte handling subsystem


12


is intended to be widely used in electrochemical processing systems. While the invention could be adapted for use with many types of such systems, it is intended initially for use with in place systems, wherein the electrolyte


24


is recirculated. In such systems it has been found that the electrolyte is further heated each time that it passes through the active area wherein the cathode


14


is electrically interacting with the anode (the pipe


28


, in this example).




Since the inventive electrolyte handling subsystem


12


of the present invention may be readily produced and integrated with existing electropolishing and electroplating devices, and since the advantages as described herein are provided, it is expected that it will be readily accepted in the industry. For these and other reasons, it is expected that the utility and industrial applicability of the invention will be both significant in scope and long-lasting in duration.



Claims
  • 1. An electropolishing system for polishing the inner surface of a pipe, said electropolishing system comprising:a reservoir for holding a supply of electrolyte; a first coupling for providing said electrolyte from said reservoir to a first end of said pipe; a second coupling for returning said electrolyte from a second end of said pipe to said reservoir; an electrode to polish the inner surface of said pipe by passing said electrode trough said pipe while said electrolyte is circulated through said pipe; a temperature sensor; a heater, separate from said electrode, for heating said electrolyte; and a cooling apparatus adapted for cooling the electrolyte.
  • 2. The electropolishing system of claim 1, wherein:the cooling apparatus includes a refrigeration unit.
  • 3. The electropolishing system of claim 1, wherein:the cooling apparatus includes a heat exchanger adapted for conducting heat away from the electrolyte.
  • 4. The electropolishing system of claim 3, wherein:the heat exchanger is placed in the path of the electrolyte as the electrolyte is circulated through the pipe.
  • 5. The electropolishing system of claim 3, wherein:the heat exchanger is placed in a portion of the pipe.
  • 6. The electropolishing system of claim 3, and further including:a refrigeration unit adapted for accepting heat energy from the heat exchanger.
  • 7. The electropolishing system of claim 1, wherein:the cooling apparatus is manually controlled.
  • 8. The electropolishing system of claim 1, wherein:the cooling apparatus is activated by a temperature control unit.
  • 9. The electropolishing system of claim 8, wherein:the heater is activated by said temperature control unit.
  • 10. The electropolishing system of claim 1, wherein said cooling apparatus is disposed to cool said electrolyte prior to returning said electrolyte to said reservoir.
  • 11. The electropolishing system of claim 1, wherein said heater is disposed in said reservoir.
  • 12. The electropolishing system of claim 11, wherein said cooling apparatus is disposed to cool said electrolyte prior to returning said electrolyte to said reservoir.
  • 13. The electropolishing system of claim 12, further comprising a temperature control unit responsive to signals from said temperature sensor, and operative to selectively energize said heater and said cooling apparatus depending on the temperature of said electrolyte in said reservoir.
  • 14. The electropolishing system of claim 1, further comprising a temperature control unit responsive to signals from said temperature sensor, and operative to selectively energize said heater and said cooling apparatus depending on the temperature of said electrolyte in said reservoir.
US Referenced Citations (13)
Number Name Date Kind
2764540 Farin et al. Sep 1956 A
3055812 Andersson Sep 1962 A
3329596 Abt et al. Jul 1967 A
4369101 Wolff et al. Jan 1983 A
4645581 Voggenthaler et al. Feb 1987 A
4705611 Grimes et al. Nov 1987 A
4772367 Menzel et al. Sep 1988 A
4826582 Lavalerie et al. May 1989 A
5112453 Behr et al. May 1992 A
5135625 Lewy Aug 1992 A
5507923 Stouse et al. Apr 1996 A
5958195 Lorincz et al. Sep 1999 A
6083376 Akram et al. Jul 2000 A