The conventional pipe enlarging device is disclosed in
However, the positioning member 94 has to be long enough to include the multiple holes 941, and the long positioning member 94 includes cost. The users have to align the central axis of the hole 941 with the center tip of the cone-shaped member. Once the central axis of the hole 941 is not aligned with the center tip of the cone-shaped member, the front threaded rod 93 has to be unscrewed to adjust the positioning member 94. The cone-shaped member is located within the passage 911 and is not convenient for the users to adjust the position of the hole 941 relative to the cone-shaped member.
The present invention intends to provide a pipe enlarging device that includes movable front, rear, left and right clamps to form an adjustable clamping area so as to clamp pipes of different sizes.
The present invention relates to a pipe enlarging device and comprises a base, an operation unit and a clamping unit. The clamping unit is received in the base and includes movable front and rear clamps, multiple resilient members and a front threaded rod. The front and rear clamps are resiliently movable when the front threaded rod is rotated so as to form an adjustable clamping area between the front and rear clamps. The clamping area is used to clamp pipes of different sizes. The operation unit includes a top threaded rod with a cone-shaped member which is used to enlarge the inner diameter of the pipes.
The present invention will become more apparent from the following description when taken in connection with the accompanying drawings which show, for purposes of illustration only, a preferred embodiment in accordance with the present invention.
Referring to
A clamping unit 30 is located within the rectangular room 15 and includes a left clamp 32, a right clamp 320, a front clamp 31 and a rear clamp 310 respectively located corresponding to the left wall 154, the right wall 155, the front wall 156 and the rear wall 151. The rear clamp 310 includes one side that is substantially the same length as that of the rear wall 151 so as to be in contact with the rear wall 151. The front clamp 31 includes one side that is substantially the same length as that of the front wall 156 so as to be in contact with the front wall 156. The front clamp 31 includes a left side and a right side, wherein the left and right sides of the front clamp 31 respectively and horizontally slidable along the left wall 154 and the right wall 155. The front clamp 31 includes two first notches 311 defined in the rear side thereof, and the rear clamp 310 includes two second notches 3110 defined in the front side thereof. The rear side of the front clamp 31 faces the front side of the rear clamp 310. Each of the first and second notches 311, 3110 has a guide face 313 and a positioning face 312. A reception area 3111 is defined between the first and second notches 311, 3110. The left clamp 32 and the right clamp 320 are accommodated in the reception area 3111. A first curved face 316 is formed between the two first notches 311, and another first curved face 316 is formed between the two second notches 3110. Each of the left clamp 32 and the right clamp 320 is a substantially square block and has two push faces 322 and two inclined faces 323. A substantially right-angle corner is formed between the two inclined faces 323 of each of the left and right clamps 32, 320. A second curved face 321 is formed between the two push faces 322 of each of the left and right clamps 32, 320. Each of the two inclined faces 323 of each of the left and right clamps 32, 320 is slidable along the guide faces 313 corresponding thereto. Each of the positioning faces 312 includes a receiving hole 315 in which one of two ends of the resilient member 33 corresponding thereto is received. The resilient member 33 is biased between the correspondent push face 322 and the inner end of the receiving hole 315 in the positioning face 312. An angle 314 between the positioning face 312 and the guide face 313 is 90 degrees. The angle between the guide face 313 of each first/second notch 311/3110 of the front and rear clamps 31, 310 is 90 degrees. An angle between the two inclined faces 323 of the left and right clamps 32, 320 is 90 degrees.
A front threaded rod 40 includes threads 41 which are threadedly extending through the front threaded hole 153. The first end of the front threaded rod 40 is inserted into the room 15 to contacts the front clamp 31. A front bar 42 is connected to the second end of the front threaded rod 40 so as to rotate the front threaded rod 40.
When the front and rear clamps 31, 310 are located at a first position, the two respective first curved faces 316 of the front and rear clamps 31, 310 and the two respective second curved faces 321 of the left and right clamps 32, 320 form a clamping area 34 so as to clamp a first pipe 60. When the front threaded rod 40 is rotated to push the front clamp 31 toward the rear clamp 310, the guide faces 313 pushes the inclined faces 323 such that the left and right clamps 32, 320 slide toward each other to move the front clamp 31 and the rear clamp 310 to a second position where the clamping area 34 formed by the first and second curved faces 316, 321 is able to clamp a second pipe whose outer diameter is smaller than that of the first pipe 60. It is noted that the first and second curved faces 316, 321 are perfectly matched with the curvature of the first and second pipes.
A plate 50 is mounted to the underside of the base 10 and closes the room to restrict the clamping unit 30 within the room 15 by extending bolts 53 through the holes 52 of the plate 50 and threadedly connected to the locking holes 16. The plate 50 includes a central hole 51, and the first pipe 60 or the second pipe extends through the central hole 51 of the plate 50 and the through hole 152 of the base 10.
An operation unit 20 includes a bridge 11 connected to the base 10 and the bridge 11 extends over the top of the base 10. A threaded bore 211 is defined through the bridge 11 and the top threaded rod 24 includes threads 241 which threadedly extend through the threaded bore 211. A cone-shaped member 25 is connected to the lower end of the top threaded rod 24. Specifically, the bridge 11 includes a rectangular recess 12 defined in the top thereof. A bore 13 is defined through the inner bottom of the rectangular recess 12 and located corresponding to the through hole 152. The bore 13 is an elongate bore. The operation unit 20 further includes a part 21, a cover 22 and a top bar 242. The part 21 is movably received in the rectangular recess 12. The threaded bore 211 is defined through the part 21. The part 21 and the top threaded rod 24 are co-movable. The cover 22 is mounted to the top of the bridge 11 to restrict the part 21 within the rectangular recess 12. Specifically, two threaded holes 14 are defined in the top of the bridge 11, and the bore 13 is located between the two threaded holes 14. The cover 22 includes two apertures 222, and two bolts 23 extend through the two apertures 222 and are threadedly connected to the two threaded holes 14 of the bridge 11 to fix the cover 22 to the bridge 11 and to close the rectangular recess 12. The top bar 242 is connected to the top threaded rod 24 so as to rotate the top threaded rod 24. The cover 22 includes an elongate hole 221 which is located corresponding to the bore 13, so that the top threaded rod 24 movably extends through the elongate hole 221 and the bore 13.
When the top threaded rod 24 is rotated and the cone-shaped member 25 moves toward the base 10, the cone-shaped member 25 enters into the first pipe 60 or the second pipe and enlarges the inner diameter of the first pipe 60 or the second pipe. In this embodiment, the bridge 11 is integral with the base 10.
The front and rear clamps 31, 310, and the left and right clamps 32, 320 are movable by rotating the front threaded rod 40 within the room 15 so as to clamp pipes of different sizes.
When front threaded rod 40 gradually enters into the room 15, the front and rear clamps 31, 310, and the left and right clamps 32, 320 are moved and compress the resilient members 33 to clamp a smaller pipe.
When front threaded rod 40 gradually moves away from the room 15, the front and rear clamps 31, 310, and the left and right clamps 32, 320 are moved and release the resilient members 33 so as to clamp a larger pipe.
The bridge 11 with the top threaded rod 24 and the cone-shaped member is able to move relative to the base to aim the central axis of the pipe to be enlarged.
When the top threaded rod 24 is rotated to guide the cone-shaped member 25 to enter the opening 61 of the first pipe 60, because the bridge 11 is movable relative to the base 10, so that the cone-shaped member 25 can precisely aim the central axis of the opening 61 of the first pipe 60.
As shown in
As shown in
While we have shown and described the embodiment in accordance with the present invention, it should be clear to those skilled in the art that further embodiments may be made without departing from the scope of the present invention.
The present invention is a Continuation-In-Part application of applicant's former patent application with the application Ser. No. 16/396,791, filed on Apr. 29, 2019.
Number | Name | Date | Kind |
---|---|---|---|
2277410 | Neukirch | Mar 1942 | A |
RE24051 | Wolcott | Aug 1955 | E |
2736360 | Quercetti | Feb 1956 | A |
2892480 | Franck | Jun 1959 | A |
3103245 | Iskyan | Sep 1963 | A |
4174646 | Kotler | Nov 1979 | A |
Number | Date | Country |
---|---|---|
1574269 | Sep 2005 | ES |
Number | Date | Country | |
---|---|---|---|
20200338622 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16396791 | Apr 2019 | US |
Child | 16520361 | US |