1. Field of the invention
The present invention relates to a pipe feeding mechanism of an automatic pipe bender, more particularly one, which can deliver great force output when feeding a pipe through a bending mechanism, and can move back to the initial position-at higher speed after it finishes feeding the pipe.
2. Brief Description of the Prior Art
Referring to
Feeding mechanisms of pipe benders have to deliver great force output in feeding a pipe into bending mechanisms of pipe benders, and are usually equipped with planetary gears, through which great force output can be provided. Referring to
The feeding mechanism 20 will push a pipe through a bending mechanism with increased force and reduced speed in the feeding stroke owing to the planetary gear set 202. However, the feeding mechanism will also move at the same speed during the back stoke due to the planetary gear set 202, and it's a waste of time because there is no need for the planetary gear set to function to increase the force output during the back stroke of the feeding mechanism 20. Consequently, efficiency of the pipe bender is reduced.
It is a main object of the present invention to provide a pipe feeding mechanism of an automatic pipe bender to overcome the above disadvantages.
The pipe feeding mechanism of an automatic pipe bender includes a fixed gear rack, a shell movable along the rack, a power source fixed to the shell, first and second planetary gears in the shell, a clutch for making an output shaft of the first planetary gear releaseably secured to an input shaft of the first planetary gear, and a brake for releaseably blocking rotation of a sun gear of the first planetary gear. The input shaft of the first planetary gear is connected to an output shaft of the power source. The first planetary gear will be stopped from functioning, and the output shaft thereof rotated at a same speed as the input shaft thereof during a return stroke of a pipe feeding cycle after the clutch is switched to a clutching position, and the brake device is switched to a releasing position. The first planetary gear will be allowed to function together with the second planetary gear to increase torque output during a forward feeding stroke after the clutch is switched to a releasing position, and the brake device is switched to a braking position. Thus, the pipe feeding mechanism can move at a higher speed during a return stroke than it does during a forward feeding stroke.
This invention will be better understood by referring to the accompanying drawings, wherein:
Referring to
The shell 11 is fixedly disposed on the feeding base 111. The power source 12 is arranged on top of the shell 11 for delivering power to the planetary gear devices 13 and 14, and has a rotary output shaft 121. The first planetary gear device 13 is arranged in an upper portion of the shell 11, and includes a central toothed shaft 131, several planet pinions 132, an upper rotary support 133, a fixing block 134, and an actuating gear 135. The central toothed shaft 131 is securely connected to the output shaft 121 of the power source 12 to be rotary together with the shaft 121 while the fixing block 134 is secured to the central toothed shaft 131. The central toothed shaft 131 has gear teeth 1311 around a lower end thereof. The actuating gear 135 is arranged around the central toothed shaft 131, and has gear teeth (not numbered) on an inner side. The planet pinions 132 are rotary on respective shafts 1321, which are supported in position on the upper support 133. And, the upper rotary support 133 is arranged in the shell 11 with the planet pinions 132 engaging the gear teeth 1311 of the central toothed shaft 131 as well as the gear teeth of the actuating gear 135. The planet pinions 132 will normally rotate on respective shafts 1321, and make circular motion around the central toothed shaft 131 when the central toothed shaft 131 is turned by the power source 12. Consequently, the upper support 133 is normally caused to turn by the circular motion of the planet pinions 132 when the power source 12 functions.
Furthermore, the upper rotary support 133 has a clutch seat 1332 secured thereto while the clutch devices 16 are arranged under two ends of the clutch seat 1332. The fixing block 134 has clutch plates 1341 secured to a lower side thereof to oppose the clutch seat 1332; thus, when the clutch devices 16 are in a clutching position, and when the actuating gear 135 is free to rotate, and when the power source 12 functions, the upper support 133 will be connected with the fixing block 134 to be directly turned through rotation of the central toothed shaft 131. And, when the clutch devices 16 are in a releasing position, and the actuating gear 135 is held still to function like a sun gear, and when the power source 12 is started, the upper support 133 will be caused to turn through circular movement of the planet pinions 132 around the central toothed shaft 131, i.e. the upper support 133 is rotated at reduced speed and with increased torque output.
A bearing 1331 is arranged between the central toothed shaft 131 and the upper support 133, and a bearing 1351 is arranged between the upper support 133 and the actuating gear 135 while a bearing 1352 is arranged between the actuating gear 135 and the shell 11; thus, the planetary gear device 13 can function more smoothly.
The second planetary gear device 14 is comprised of a central toothed shaft 141, several planet pinions 142, a lower rotary support 143, and a fixed sun gear 144. The central toothed shaft 141 is securely connected to the upper support 133 of the first planetary gear device 13 to be rotary together with the upper support 133. The central toothed shaft 141 has gear teeth 1411 around a lower end thereof. The fixed sun gear 144 is fixedly disposed around the central toothed shaft 141, and has gear teeth (not numbered) on an inner side. The planet pinions 142 are rotary on respective shafts 1421, which are supported in position on the lower support 143. And, the lower rotary support 143 is arranged such that the planet pinions 132 are engaged with the gear teeth 1411 of the central toothed shaft 141 as well as the gear teeth of the sun gear 144. Thus, the planet pinions 142 will rotate on respective shafts 1421, and make circular motion around the central toothed shaft 141 when the central toothed shaft 141 is turned together with the upper support 133 by the power source 12, and in turns, the lower rotary support 143 will rotate at a lower speed and with more torque output than the upper support 133. In addition, the lower rotary support 143 has gear teeth 1431 around a lower end, and is engaged with the rack 101 at the gear teeth 1431 thereof; thus, the pipe feeding mechanism 1 will move along the gear rack 101 when the power source 12 functions.
Furthermore, a brake plate 1353 is secured to a lower side of the actuating gear 135, and a brake device 15 is arranged under the brake plate 1353 of the actuating gear 135 with a brake plate 151 thereof facing the brake plate 1353; thus, the actuating gear 135 can be kept still when the brake device 15 is in the braking position. A bearing 1432 is provided between the central toothed shaft 141 and the lower support 143 while a bearing 1433 is provided between the lower support 143 and the fixed sun gear 144.
To feed a pipe into the bending mechanism, the clutch device 16, and the brake device 15 are first switched to the releasing position, and the braking position respectively such that the actuating gear 135 is kept still to be capable of working as a fixed sun gear, and such that when the power source 12 functions, the upper support 133 of the first planetary gear device 13 will be made to rotate through circular movement of the planet pinions 132 around the central toothed shaft 131, and cause the central toothed shaft 141 of the second planetary gear device 14 to turn. Consequently, the lower support 143 of the second planetary gear device 14 is made to rotate with great torque through circular movement of the planet pinions 142 around the central toothed shaft 141, and the pipe feeding mechanism 1 can be moved at low speed and with great force along the gear rack 101 during the forward feeding stroke thereof, as shown in
As soon as a pipe is fed into the bending mechanism, the clutch device 16, and the brake device 15 are switched to the clutching position, and the releasing position respectively such that the actuating gear 135 is free to rotate, and such that the upper support 133 is connected with the fixing block 134, and directly made to turn through rotation of the central toothed shaft 131. Therefore, the upper support 133 will be directly made to rotate through rotation of the output shaft 121 of the power source 12; in other words, the upper support 133 will rotate at a same speed as the output shaft 121, and torque output will not be changed when power is transmitted through the first planetary gear device 13. And, the upper support 133 causes the central toothed shaft 141 of the second planetary gear device 14 to turn, and torque output is increased after movement is passed on through the second planetary gear device 14; thus, the lower support 143 is made to rotate with a greater torque and at a slower speed than the upper support 133. Consequently, the pipe feeding mechanism 1 can move along the rack 101 at a higher speed during a return stroke, as shown in
From the above description, it can be seen that the force output can be significantly increased during a forward feeding stroke of the present pipe feeding mechanism through both the first and the second planetary gear devices 13 and 14 while the pipe feeding mechanism can move at higher speed during a return stroke thereof than it does during the forward feeding stroke after the clutch device 16, and the brake device 15 are respectively switched to the clutching position, and the releasing position, wherein the planetary gear device 13 is virtually made to not function like one.