The present invention relates to a pipe joint for connecting piping used for fluid circulation.
In a fluid circulation system as shown in
The pipe joint 52 as described above according to the conventional technology, however, inevitably needs to embed the reinforcement member 54 into the joint body 53 in order to keep the shape of the joint body 53, and moreover, as fluid pressure is exerted on the joint body 53, the joint body 53 expands and spreads axially, which stresses the piping system 51 by putting an unfavorable load thereon. In addition, when both flanges 56 are attached to the joint body 53, it is necessary to crush both ends of the joint body for fitting the flanges thereinto, which makes the work complicated.
The object of this present invention is, in view of the problems described above, to provide a pipe joint not requiring a reinforcement member, not bearing a load unfavorable to piping and the like, even when fluid pressure is exerted on the joint body, having a joint body with an increased safety and endurance, and capable of getting rid of complicatedness in attaching the flanges to the joint body.
In order to achieve the object described above, the pipe joint according to this invention is characterized in that the pipe joint comprises a hollow cylindrical joint body made of an elastic material with a prescribed length, and a circular flange embedded into both ends of the joint body. In the direction of the circumference of the flange and the joint body are provided a plurality of through holes communicating axially at prescribed intervals and both flanges are connected to the joint body with a connecting appliance inserted into these through holes.
The pipe joint according to this invention has the configuration as described above so that, even when fluid pressure is exerted on the joint body, connecting both flanges to the joint body with the connecting appliance makes it possible to prevent the joint body from spreading axially, not bearing a load unfavorable to piping and the like. Further, this can increase safety and endurance of the joint body. In addition to no need for embedding a reinforcement member into the joint body in order to keep the shape of the same, the work of attaching flanges is not necessary.
One embodiment of the present invention is described with reference to the drawings.
In
To show one example of the specific size of the pipe joint 1, for example, the external diameter D1 of the joint body 2 is 220 mm, the internal diameter D2 is 105 mm, and the face-to-face distance (thickness) T is 75 mm. It is to be noted that this is only an example and is not intended to exclude other possible designs.
The joint body 2 is preferably made of a material having an elasticity which can absorb vibration from the piping and the like connected to the pipe joint 1, and a rigidity which can resist pressure from fluid circulating therein with several millimeters of displacement absorbency against eccentricity, expansion, contraction and the like, and, for example, chloroprene rubber or hard rubber with a hardness, such as EPDE, in the range of from about HS55 to about HS70 is preferable. Further, displacement absorbency against eccentricity, expansion, contraction and the like in the joint body 2 is preferably not more than 5 mm, and more preferably, not more than 3 mm.
The flanges 5a, 5b and the bolt-nut 8 are preferably made of a metal having a strength and rigidity capable of supporting the pipe joint 1 without deforming, even when a large fluid pressure is exerted on the pipe joint 1. It is to be noted that metal is not exclusively used for the case described above, and, needless to say, other materials can be used.
The seal packing 13 may have any other configuration and does not need to have the multiple configuration described above, as long as, when the pipe joint 1 is connected to some other pipe, the seal packing 13 can prevent the leakage of fluid through the connecting surface between the pipe joint 1 and some other pipe.
The liquid circulating in a pipe connected to the pipe joint 1 is not limited to a specific one as long as the liquid does not erode the elastic material forming the joint body 2, and water, seawater and gas or the like can be utilized advantageously. Further, the temperature of the fluid is preferably in the range from −20° C. to 90° C. When the temperature of the fluid is less than −20° C., there is a possibility that the joint body 2 disadvantageously loses elasticity, while, when the temperature of the fluid is more than 90° C., the joint body 2 may disadvantageously get soft or degraded, or lose endurance, thereby weakening its capacity to counter the liquid pressure. In addition, the pressure of the liquid is preferably less than 1.6 MPa. A liquid pressure of more than 1.6 MPa disadvantageously shortens the life of the joint body 2.
Next, the action of the pipe joint 1 is described below. When the pipe joint 1 is connected to a piping system 51 shown in
As described above, the pipe joint 1 comprises the joint body 2 made of elastic material so that, even when the internal pressure given by the fluid circulating in the joint body 2 tends toward spreading it axially, the bolt-nut 8 resists against the internal pressure and prevents the joint body 2 from spreading, which avoids a load on the piping and the like connected to the pipe joint 1. In a case where the bolt-nut 8 is degraded or the internal pressure is higher than expected, it is possible to prepare for the case by replacing the bolt-nut 8 with one having a greater endurance. On the other hand, the joint body 2 has a high rigidity, so that it is not necessary to embed a reinforcement member as in the conventional technology in order to keep the shape of the joint body 2. Further, as the flanges 5a, 5b are embedded into the joint body 2 beforehand, the work of attaching the flanges 5a, 5b is not required.
The joint body 2 between the flanges 5a, 5b is reinforced by the bolt-nut 8 positioned to penetrate the joint body 2 in the direction of the axis thereof so that expansion and contraction of the side wall of the joint body 2 vertical to the direction of the axis thereof can be suppressed. Further, on both surfaces of the outer side 4 of the pipe joint 1 is formed a convex seal packing 13 into a unitary structure with the joint body 2 so that, when the pipe joint 1 is connected to some other pipe, the seal packing 13 can prevent the leakage of fluid through the connecting surface between the pipe joint 1 and some other pipe, allowing an increased safety and endurance.
The pipe joint 21 described above is also expected to have the same action as the pipe joint 1 according to the embodiments described above and, in addition to this, the pipe joint 21 according to this embodiment can ensure that the reinforcement member 27 further prevents the joint body 22 from spreading axially.
Number | Date | Country | Kind |
---|---|---|---|
2003-161614 | Jun 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
787791 | Reynolds | Apr 1905 | A |
1948211 | Fritz | Feb 1934 | A |
3039795 | Reuter | Jun 1962 | A |
3834744 | Masatchi | Sep 1974 | A |
4003210 | Bostroem | Jan 1977 | A |
4616860 | Faria et al. | Oct 1986 | A |
5197766 | Glover et al. | Mar 1993 | A |
5316320 | Breaker | May 1994 | A |
5558344 | Kestly et al. | Sep 1996 | A |
5884946 | Esser | Mar 1999 | A |
6050614 | Kirkpatrick | Apr 2000 | A |
Number | Date | Country |
---|---|---|
2098295 | Nov 1982 | GB |
Number | Date | Country | |
---|---|---|---|
20040245775 A1 | Dec 2004 | US |