The present disclosure relates to a system and method for lining an interior surface of a pipe.
In one embodiment, the disclosure provides a method of lining a pipe with a lining mixture formed from a dry component and a liquid. The method includes placing the dry component in a dry component surface container located above ground, conveying the dry component from the dry component surface container to a dry component subterranean supply container located underground, conveying the dry component from the dry component subterranean supply container to a mixer located underground, mixing the dry component with the liquid to form the lining mixture, and applying the lining mixture to the pipe with a mixture applicator.
In another embodiment, the disclosure provides a pipe lining system using a lining mixture formed from a dry component and a liquid to line a pipe. The pipe lining system includes a dry component surface container. A surface container conveyor assembly is associated with the dry component surface container. A dry component subterranean supply container is downstream from the surface container conveyor assembly. A supply container conveyor assembly is associated with the dry component subterranean supply container. A mixer is downstream from the supply container conveyor assembly. The mixer mixes the liquid with the dry component to form the lining mixture. A mixture applicator is downstream from the mixer. The mixture applicator applies the lining mixture to the pipe.
Other aspects of the disclosure will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways.
Turning now to
The pipe lining system 100 includes a dry component surface container 116. The dry component surface container 116 may be of any appropriate shape and size, but particular embodiments include a relatively high-capacity container. The dry component surface container 116 rests either directly or indirectly on the ground surface 110. In practice, such a container may be filled with material in bulk utilizing, for instance, construction equipment running along the ground surface 110. In the illustrated embodiment, the dry component surface container 116 is an open-top hopper.
Also shown in
With continued reference to
As shown in
A wet mix conveyor 130 receives the lining mixture 102 from the mixer 128. The wet mix conveyor 130 is illustrated as having an open-top design with walls extending higher on the downstream end than the upstream end. This angled design of the illustrated embodiment may aid in containing the lining mixture 102 even if the lining mixture 102 tends to bunch up at the downstream end of the wet mix conveyor 130. The illustrated embodiment includes a wet mix conveyor 130 having a screw conveyor. The screw conveyor of the wet mix conveyor 130 may serve to move the lining mixture 102 while also further mixing the lining mixture 102 to ensure better incorporation of the dry component 106 and the liquid 108. The screw conveyor of the wet mix conveyor 130 is shown in a horizontal orientation, but other embodiments may include an inclined screw conveyor.
A belt conveyor 131 receives the lining mixture 102 from the wet mix conveyor 130. The belt conveyor 131 is illustrated schematically and may include further components such as side containment walls that are angled upwardly and outwardly from the belt of the belt conveyor 131 to aid in containing the lining mixture 102 as it travels along the belt. The belt conveyor 131 moves the lining mixture 102 both horizontally to move farther along the pipe 104 and vertically to elevate the lining mixture 102 so it is high enough to drop into an open top of a downstream mixture applicator 132. Some embodiments include an inclined screw conveyor instead of the belt conveyor 131. In such embodiments, the inclined screw conveyor may be separate from the wet mix conveyor 130 or integrated therewith as a single assembly.
The mixture applicator 132 receives the lining mixture 102 from the belt conveyor 131. The mixture applicator 132 is configured to apply the lining mixture 102 to the interior surface of the pipe 104. As an example, the illustrated embodiment includes multiple spray nozzles 134 to spray the lining mixture 102 onto the interior surface of the pipe 104. Other lining mixture application configurations are also contemplated.
The mixture applicator 132 is configured to move through the interior of the pipe 104 to apply the lining mixture 102 along the interior surface of the pipe. In the illustrated embodiment, the belt conveyor 131, the wet mix conveyor 130, and the mixer 128 move with the mixture applicator 132. To facilitate the movement of the mixture applicator 132, the belt conveyor 131, the wet mix conveyor 130, and the mixer 128, each may include one or more wheels 136. Of course, other structures facilitating movement of the mixture applicator 132 and the mixer 128 are contemplated such as, for instance, one or more tracks, sleds, bearings, rollers, and the like.
The dry component subterranean supply container 124 also moves along the interior of the pipe 104. As discussed above with regard to the mixture applicator 132 and the mixer 128, the dry component subterranean supply container 124 may also include one or more wheels 136. In the illustrated embodiment, the dry component subterranean supply container 124 moves with the mixer 128. Particularly, the dry component subterranean supply container is coupled with or connected to the mixer 128. This connection may be permanent, but this connection could instead be a releasable connection.
Referring to
A mobile container conveyor assembly 144 is associated with the dry component subterranean mobile container 138. The mobile container conveyor assembly 144 includes a screw conveyor in the illustrated embodiment. Also in the illustrated embodiment, the mobile container conveyor assembly 144 is connected to and moves with the dry component subterranean mobile container 138. The dry component 106 leaves the mobile container conveyor assembly 144 and enters the subterranean supply container 124 when the dry component subterranean mobile container 138 is in the unloading location 142. The unloading location 142 moves with the dry component subterranean supply container 124 as the dry component subterranean supply container, the mixer 128, and the mixture applicator 132 move along the interior of the pipe 104. As such, the dry component subterranean mobile container 138 makes runs back and forth from below the generally vertical conveyance section 122 of the surface container conveyance assembly 118 to the dry component subterranean supply container 124. In some embodiments, the dry component subterranean mobile container 138 removably connects to the dry component subterranean supply container 124 when the dry component subterranean mobile container 138 is unloading the dry component 106 into the dry component subterranean supply container 124 at the unloading location 142.
Turning now to
As shown in
As shown in
In this described method, the second, third, and fourth steps S2, S3, S4 further include conveying the dry component 106 with a respective screw conveyor included as part of each of the surface container conveyor assembly 118, the mobile container conveyor assembly 144, and the supply container conveyor assembly 126. The mobile container conveyor assembly 144 and the supply container conveyor 118 include a first and second inclined screw conveyor, respectively, in some embodiments. Also in this described method, the sixth step S6 further includes conveying the lining mixture 102 with a respective screw conveyor included as part of the wet mix conveyor 130.
With regard to the methods contemplated herein, the above discussion of illustrated or example embodiments should not be considered to be limiting. The method steps may be carried out in any appropriate order, and steps may be added or removed as appropriate for a given application.
Although embodiments including the dry component subterranean mobile container 138 have been discussed, the current disclosure also contemplates embodiments without the dry component subterranean mobile container. In such embodiments, the dry component subterranean supply container 124 would make trips back and forth from a location receiving the dry component 106 from the surface container conveyor assembly 118 to a location delivering the dry component to the mixer 128.
In addition to the example embodiments discussed explicitly herein, the current disclosure contemplates other embodiments having additional or alternative features or configurations. Indeed, features from one embodiment may be added to or may replace features of another embodiment to form still another embodiment. As such, the discussion above should be viewed as exemplary in nature and not as a limit on the following claims. Various features and advantages of the disclosure are set forth in the following claims.