Information
-
Patent Grant
-
6811302
-
Patent Number
6,811,302
-
Date Filed
Wednesday, October 9, 200222 years ago
-
Date Issued
Tuesday, November 2, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Townsend and Townsend and Crew LLP
-
CPC
-
US Classifications
Field of Search
US
- 366 1761
- 366 1671
- 366 336
- 366 337
-
International Classifications
-
Abstract
The pipe member (1) having an infeed point (2) for an additive (20) includes a pipe wall (11) and a static mixing element (12). The infeed points are provided for introducing the additives into a flowing, low viscosity fluid (10). The static mixing element consists of a pair of vanes (5a, 5) and of a third vane (6). The vane pair (5), which forms a restriction deflecting the flow (10′) of the fluid, is formed with substantially mirror symmetry with respect to a central plane (15) extending in the direction of the flow. The third vane is arranged in a crossing manner with respect to the vane pair and in a lying manner in the region of the central plane. It has a rear side (60) with respect to the flow which extends from a base at the pipe wall to a downstream end. Each infeed point is arranged at the rear side of the third vane.
Description
BACKGROUND OF THE INVENTION
The invention relates to a pipe member having an infeed point for an additive or having a plurality of such infeed points and having a static mixing element. The invention also relates to a conduit with the pipe member of the invention and to uses of the pipe member. The additives are mixed into a flowing low viscosity fluid by means of the static mixing element. The static mixing element consists of a pair of vanes and a third vane which is arranged cross-wise with respect to the vane pair. In this respect, a vane is understood to be a plate-like body which is flat or which can also be lightly curved, which has an elongate design and which extends between a base and a narrow end.
The pipe member in accordance with the invention can in particular be a ring which can be clamped between flanges of conduit parts disposed upstream and downstream. Such an intermediate flange ring for the additional dosing and mixing of an additive (or of a plurality of additives) into a fluid stream is known, for example, from U.S. Pat. No. 5,839,828. The additive is fed into the inner space of the ring via connections and is there mixed into the fluid stream under the influence of a diaphragm which induces a vortex. For an improvement of the mixing quality, it has been proposed (European application No. 01810359.8—not pre-published) to use instead of the diaphragm, which has a particular symmetry, a mixing element with crossing vanes, the mixing element not having the symmetry present in the diaphragm. Furthermore, the improved device should be made in the form of a ring dosing device in which the mixing in of the additive is carried out while using a plurality of spot-wise infeed points, with these infeed points being positioned at an annular passage around the mixing element.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a pipe member for mixing in one or more additives into a flowing low viscosity fluid, with the pipe member including a mixing element with crossing vanes and with the additive feed taking place in a manner which is simpler to carry out than with the annular dosing device and without compromises in the mixing quality.
The pipe member having an infeed point for an additive or having a plurality of such infeed points includes a pipe wall and a static mixing element. The infeed points are provided for introducing the additives into a flowing low viscosity fluid. The static mixing element consists of a pair of vanes and a third vane. The vane pair, which forms a restriction deflecting the flow of the fluid, is formed with substantially mirror symmetry with respect to a central plane extending in the direction of the flow. The third vane is arranged in a crossing manner with respect to the vane pair and in a lying manner in the region of the central plane. It has a rear side with respect to the flow which extends from a base at the pipe wall to a downstream end. Each infeed point is arranged at the rear side of the third vane.
In accordance with the invention, the infeed point is arranged at the rear side of the third vane. It has surprisingly been found that with such an arrangement, which is very simple in design thanks to a single infeed point, a mixing quality results which is substantially better than expected. This mixing quality is better than with the annular dosing device of more complex designs in which the additive—in the expectation of a better mixing quality—is fed into the mixing space through an annular passage and a plurality of nozzle passages, with the same mixing element being installed in this mixing space as in the more favorable arrangement.
The invention will be described in the following with reference to the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
shows a pipe member in accordance with the invention;
FIG. 2
is a cross-section through the pipe member of
FIG. 1
;
FIG. 3
shows a second embodiment of the pipe member;
FIG. 4
shows a pipe member having a specially designed mixing element;
FIG. 5
is a schematic representation for the explanation of measurements;
FIG. 6
is a diagram with measurement results;
FIG. 7
is a representation of the flow relationships in the static mixer of the pipe member in accordance with the invention; and
FIG. 8
shows a device in which three pipe members in accordance with the invention are arranged in parallel.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIGS. 1 and 2
represent a pipe member
1
in accordance with the invention having an infeed point
2
for an additive
20
. A cylindrical pipe wall
11
has an inlet side
13
for a connection to an upstream conduit
3
and an outlet side
14
for a connection to a downstream conduit
4
. The flow
10
′ of a low viscosity fluid
10
leads through the inner space of the pipe member
1
. The additive
20
is mixed into the fluid
10
by a static mixing element
12
which is arranged downstream of the inlet side
13
. The mixing element
12
consists of a vane pair
5
with vanes
5
a
,
5
b
and a third vane
6
. The vane pair
5
, which forms a diaphragm deflecting the flow
10
′ of the fluid
10
, is formed with substantially mirror symmetry with respect to a central plane
15
extending in the direction of the flow
10
′. The third vane
6
is located in the region of the central plane
15
, through which it is cut along the chain-dotted line
156
. The third vane
6
is arranged in a crossing manner with respect to the vane pair
5
. It has a rear side
60
with respect to the flow
10
′ which extends from a base at the pipe wall
11
to a downstream end and thereby forms an angle in the central plane
15
from 30° to 60°. In accordance with the invention, the infeed point
2
is arranged at the rear side of the third vane
6
. The angle
61
preferably has a value from 40° to 50°.
The infeed point
2
includes a connection
2
′ and a nozzle passage
21
which leads through the pipe wall
11
and which is in particular a bore. An inner thread
22
is provided in the embodiment of
FIG. 2
for a connection to a line through which the additive
20
can be delivered. The pipe wall
11
having the inlet side
13
and the outlet side
14
is made as an intermediate flange member. The intermediate flange member
11
can be clamped between a flange
31
of the upstream conduit
3
and a flange
41
of a downstream conduit
4
. The two flanges
31
and
41
can be connected and clamped together by means of screws (not shown) inserted into bores
32
.
The vanes
5
a
,
5
b
of the pair
5
lie on two planes which intersect at least approximately in the central plane
15
under a shallow angle (φ, see FIG.
7
). The vanes
5
a
,
5
b
preferably lie at peripheral edges
51
a
and
51
b
respectively without gaps to the pipe wall
11
; they can be connected to the pipe wall
11
.
The pipe wall
11
is represented by a shape in which the pipe cross-section is circular. This can, however, also have other shapes.
FIG. 3
shows a second embodiment of the pipe member
1
. The inlet side
13
is made as a flange
13
′ at the inlet side; a second flange
14
′ is arranged at the outlet side and can be connected to the downstream conduit
4
via a flange
41
. This embodiment is suitable for large additive amounts. The infeed point
2
is a pipe with a relatively large diameter which opens into the inner space of the pipe wall
11
without a restriction. The third vane
6
can be stiffened by means of a reinforcement rib
63
. The three vanes
5
a
,
6
,
5
b
(
5
b
not visible) can be connected to a transverse carrier
64
for a further reinforcement at the vane ends. A vibration of the vanes is prevented by this reinforcement. The flange
13
′ at the inlet side or the flange
14
′ at the outlet side can also be omitted.
FIG. 4
shows a pipe member
1
having an especially designed mixing element
12
. The vanes
5
a
,
6
and
5
b
are secured to a shallow ring
7
or connected to such a ring. This ring
7
is tightly inserted between the flange
31
of the conduit
3
and the inlet side
13
, preferably with seals
70
(only one shown). The ring
7
can also be inserted into a groove (not shown), with this groove forming a shallow recess at the end face
31
a
of the flange
31
.
A conduit, into which the pipe member
1
in accordance with the invention is installed, includes parts
3
and
4
which are disposed upstream and downstream of the installed pipe member
1
. These parts
3
and
4
have the same or largely the same inner diameter D as the installed pipe member
1
.
Some parameters are explained with respect to the measuring results shown in
FIG. 6
with reference to a schematic representation which is shown in FIG.
5
: The pipe wall
11
, alone or together with a part of the downstream conduit
4
, includes a pipe length
114
whose start
16
lies at x=0 (outlet side of the static mixing element
12
) and whose end
17
lies at x=L (length of the pipe length
114
). For a predetermined homogeneity of an additive distribution
8
, the quotient L/D (D=pipe inner diameter) must adopt a value which depends on the mixing effect of the device including the mixing element
12
and the infeed point
2
. The additive distribution
8
—see the diagram on the right-hand side in FIG.
5
—can be represented for every path coordinate x by a concentration c(y, z) (where the coordinates x, y and z form an orthogonal system). This concentration varies by a mean value c
m
in the region of an interval of the width Δc. The larger x is, the smaller Δc is due to the effect of the static mixer. A distribution coefficient CoV, which can be determined experimentally, is a measure for the ratio Δc/C
m
: (where CoV=standard deviation divided by c
m
: CoV
2
=Σ(c
i
/c
m
−1)
2
/(n−1) for n measured values c
i
1=1 . . . n). If this coefficient CoV is equal to 0.05, then the additive distribution for most applications can be termed sufficiently homogeneous.
The diagram of
FIG. 6
shows measured results for three static mixers, with a mixing ratio of 1:2000 (0.05%) having been selected: The two points at the ends of the length
9
(squares) are measured values for the pipe member
1
in accordance with the invention. The arrow
91
points to the position L/D at which a homogeneous additive distribution is reached: L/D there amounts to approximately 2.5. Corresponding measured values (circles) on the length extent
9
′ have been obtained for an annular dosing device with sixteen infeed points. Here, L/D is approximately equal to 3.5 (arrow
91
′), that is, much larger. The measured values (crosses) of the length
9
″ have been found for another mixing element which has a very simple shape and which is described in EP-A-800 857. It was expected for this mixing element that the mixing effect is likewise relatively good. However, here the required mixing length
4
has proved to be substantially longer (see arrow
91
″). Further measurements for the pipe member
1
in accordance with the invention with different mixing ratios have led to largely the same results. For example, for the mixing ratio of 1:5 (20%), a mixing length L, which is a little shorter, resulted. Interestingly, pronounced dependencies on the mixing ratio resulted for the other, known mixing devices. The corresponding mixing length, however, was always much shorter for the device in accordance with the invention.
It can thus be stated that the pipe member
1
in accordance with the invention, which has a very simple design construction, has an unexpectedly good mixing effect, and indeed unexpectedly good with respect to other mixers for which good mixing effects had also been expected.
The pipe member in accordance with the invention is suitable to mix a fluid low viscosity additive
20
into a main flow
10
′. The additive flow is as a rule not larger than the main flow. Mixing ratios which can be practically as small as desired (e.g. 1:10,000) can also be made. The diameter of the infeed point must be adapted in each case.
In
FIG. 7
, the flow ratios are shown in the static mixing element
12
of the pipe member
1
in accordance with the invention (wall
11
) as resulted from flow calculations: The inflowing fluid
10
is partly deflected to the third vane
6
by the wing pair
5
. The fluid
10
passing through the restriction of the vane pair
5
forms two counter-rotating vortices
10
a
and
10
b
at the leeward sides of the vanes
5
a
,
5
b
and
6
. Small vortices
10
c
and
10
d
, which ebb away rapidly, additionally arise at the base of the third vane. The experimentally confirmed, excellent mixing effect results due to these flow ratios which are induced by the static mixing element. The vane pair
5
forms a shallow angle φ which is smaller than 180° and which has an advantageous effect on the formation of the vortices
10
a
and
10
b.
FIG. 8
shows a device in which three pipe members
1
of the invention, which have rectangular cross-sections, are arranged in parallel in a common passage.
Claims
- 1. A pipe member for introducing an additive into a low viscosity fluid flow comprising a pipe wall, a static mixing element including a pair of vanes and a third vane, the pair of vanes forming a restriction deflecting the fluid flow and being arranged in substantial mirror symmetry with respect to a central plane extending in a direction of the fluid flow, the third vane being arranged in a crossing manner with respect to the pair of vanes and in a region of the central plane, the third vane having a rear side with respect to the fluid flow which extends from a base at the pipe wall to a downstream end and forming an angle relative to the central plane, and one infeed point for the additive arranged at the rear side of the third vane.
- 2. A pipe member in accordance with claim 1 wherein the infeed point includes a connection and at least one nozzle passage leading through the pipe wall.
- 3. A pipe member in accordance with claim 2 wherein the nozzle passage comprises a bore.
- 4. A pipe-member in accordance with claim 1 wherein the angle of the third vane has a value between 30° and 60°.
- 5. A pipe member in accordance with claim 4 wherein the vanes of the static mixer element are connected to a shallow ring inserted between a flange of the upstream conduit and the inlet side.
- 6. A pipe member in accordance with claim 4 wherein the angle of the third vane has a value between 40° and 50°.
- 7. A pipe member in accordance with claim 1 including an inlet side for a connection to an upstream conduit and an outlet side for a connection to a downstream conduit.
- 8. A pipe member in accordance with claim 7 including at least one of a flange on the inlet side and a flange on the outlet side.
- 9. A pipe member in accordance with claim 7 wherein the pipe wall comprises an intermediate flange member clamped between the flanges of the upstream conduit and the downstream conduit that are connected by means of screws.
- 10. A pipe member in accordance with claim 9 wherein the flange member comprises a ring cylinder.
- 11. A pipe member in accordance with claim 1 wherein the vanes of the pair of vanes are arranged in two planes which intersect at least approximately at a shallow angle in the central plane; and wherein the vanes contact the pipe wall with peripheral edges without gaps.
- 12. A pipe member in accordance with claim 11 wherein the peripheral edges of the vanes are connected to the pipe wall.
- 13. A conduit having a pipe member in accordance with claim 1 including a pipe having a length downstream of the mixing element which is larger than the inner diameter of the pipe member by a factor of 1 to 5.
- 14. A conduit according to claim 13 wherein the pipe length is larger than the inner diameter of the pipe member by a factor of 2 to 3.
- 15. A method for introducing an additive into a low viscosity fluid flow through a pipe member having a pipe wall comprising mixing the low viscosity fluid with the additive by positioning a pair of vanes and a third vane in the fluid flow, arranging the pair of vanes in substantial mirror symmetry with respect to a central plane extending in a direction of the fluid flow so that the pair of vanes form a restriction deflecting the fluid flow, arranging the third vane in a crossing manner with respect to the pair of vanes in a region of the central plane, the third vane having a rear side with respect to the fluid flow, positioning the third vane so that a base thereof is located at the pipe wall and a downstream end of the third vane forms an angle relative to the central plane, and injecting the additive into the fluid flow from a single infeed point at the rear side of the third vane.
Priority Claims (1)
Number |
Date |
Country |
Kind |
01811015 |
Oct 2001 |
EP |
|
US Referenced Citations (10)
Foreign Referenced Citations (1)
Number |
Date |
Country |
1 153 650 |
Nov 2001 |
EP |