Referring now to the drawings, in which like numerals refer to like elements throughout the several views,
The penetrating pipe 120 may be inserted through the duct wall 110 via a conventional pipe stub 130. The pipe stub 130 is generally slightly larger than the penetrating pipe 120 and protrudes from the duct wall 110. The pipe stub 130 may be made out of stainless steel, or similar types of high temperature resistant materials. The pipe stub 130 may include a pipe stub expansion joint flange 135 at the lower end thereof.
The pipe penetration system 100 may include a thermal sleeve 140 that surrounds the pipe stub 130 at the connection to the duct wall 110. The thermal sleeve 140 may have a slightly larger diameter than that of the pipe stub 130. The thermal sleeve 140 may end in a truncated conical closeout 150 about the penetrating pipe 130 so as to reduce thermal stress. The thermal sleeve 140 may be made out of carbon steel, or similar types of materials consistent with the material of the duct wall 110. The thermal sleeve 140 may be attached to the duct wall 110 via welding or similar types of connection means.
The pipe penetration system 100 further includes a metal bellows 160. The bellows 160 may be positioned beneath the thermal sleeve 140. The bellows 160 may include a number of curved folds 170 so as to expand and deflect as needed. The number of folds may be defined by the expected amount of lateral and axial displacement. The bellows 160 may be made out of carbon steel, stainless steel, Inconel (nickel-chromium-iron alloys), or similar types of materials with good ductile qualities. One end of the bellows 160 may be bolted to the pipe stud flange 135 via a first flange 180. The other end of the bellows may be bolted to the penetrating pipe flange 125 at a second flange 190. Other types of connection means may be used herein.
The use of the thermal sleeve 140 greatly reduces the temperature at the duct wall 110. Likewise, the use of the bellows 160 allows the penetrating pipe 120 to move in any direction. The pipe penetration system 100 as a whole thus allows for large displacements (axially, vertically, and radially) as well as accommodating thermally induced strains. Specifically, the pipe penetration system 100 accommodates high relative displacements between the duct wall 110 and the penetrating pipe 120. The pipe penetration system 100 addresses the potential high stresses at the duct wall 110 to the pipe 120 by thermally isolating the penetrating pipe 120 so as to lower the interface temperature. The pipe penetration system 100 thus accommodates large thermal movements while still being leak proof. The pipe penetrations system 100 allows for complete adjustment and requires no special installation tools or methods. The pipe penetration system 100 generally utilizes common and inexpensive manufacturing processes.
The pipe penetration system 100 may be used with the exhaust diffusers of for example, the 7H and the 9H model gas turbines sold by General Electric Company of Schenectady, N.Y. Specifically, the pipe penetration system 100 may be used in any application requiring high relative movement and low thermal stress.
Variations on the pipe penetration system 100 also can be used in other applications. For example, the pipe penetration system 100 could be used in a gas turbine inlet bleed heat system. In such a system, a large hot supply pipe 120 carrying high-pressure compressor air has to penetrate a duct wall 110. The pipe 120 should be thermally and mechanically decoupled from the duct 110. Many other applications may be used herein.
It should be readily apparent that the foregoing relates only to the preferred embodiments of the present application and that numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.