The disclosure relates generally to the field of “managed pressure” wellbore drilling. More specifically, the disclosure relates to managed pressure control apparatus and methods which do not require the use of a rotating control device (“RCD”), rotating blowout preventer or similar apparatus to restrict or close a wellbore annulus.
Managed pressure drilling uses well pressure control systems that control return flow of drilling fluid in a wellbore annulus to maintain a selected pressure or pressure profile in a wellbore. U.S. Pat. No. 6,904,891 issued to van Riet describes one such system for controlling wellbore pressure during the drilling of a wellbore through subterranean formations. The system described in the '891 patent includes a drill string extending into the wellbore. The drill string may include a bottom hole assembly (“BHA”) including a drill bit, drill collars, sensors (which may be disposed in one or more of the drill collars), and a telemetry system capable of receiving and transmitting sensor data between the BHA and a control system disposed at the surface. Sensors disposed in the bottom hole assembly may include pressure and temperature sensors. The control system may comprise a telemetry system for receiving telemetry signals from the sensors and for transmitting commands and data to certain components in the BHA.
A drilling fluid (“mud”) pump or pumps may selectively pump drilling fluid from a drilling fluid reservoir, through the drill string, out from the drill bit at the end of the drill string and into an annular space created as the drill string penetrates the subsurface formations. A fluid discharge conduit is in fluid communication with the annular space for discharging the drilling fluid to the reservoir to clean the drilling fluid for reuse. A fluid back pressure system is connected to the fluid discharge conduit. The fluid back pressure system may include a flow meter, a controllable orifice fluid choke, a back pressure pump and a fluid source coupled to the pump intake. The back pressure pump may be selectively activated to increase annular space drilling fluid pressure. Other examples may exclude the back pressure pump.
Systems such as those described in the van Riet '891 patent comprise a RCD or similar rotatable sealing element at a selected position, in some implementations at or near the upper end of the wellbore. The upper end of the wellbore may be a surface casing extending into the subsurface and cemented in place, or in the case of marine wellbore drilling, may comprise a conduit called a “riser” that extends from a wellhead disposed on the water bottom and extending to a drilling platform proximate the water surface. Further, in such systems as described in the van Riet '891 patent, a fluid discharge line from the upper end of the wellbore but below the RCD may comprise devices such as a controllable orifice choke such that drilling fluid returning from the wellbore may have its flow controllably restricted to provide a selected fluid pressure in the wellbore or a selected fluid pressure profile (i.e., fluid pressure with respect to depth in the wellbore).
The well drilling system may make use of a managed pressure drilling (MPD) system during drilling of a wellbore to adjust the fluid pressure in a wellbore annulus to selected values during drilling. Operation and details of the MPD system may be substantially as described in U.S. Pat. No. 7,395,878 issued to Reitsma et al. and in U.S. Pat. No. 6,904,981 issued to van Riet.
The well drilling system 100 includes a hoisting device known as a drilling rig 102 that is used to support drilling a wellbore through subsurface rock formations such as shown at 104. Many of the components used on the drilling rig 102, such as a kelly (or top drive), power tongs, slips, draw works and other equipment are not shown for clarity of the illustration. A wellbore 106 is shown being drilled through the rock formations 104. A drill string 112 is suspended from the drilling rig 102 and extends into the wellbore 106, thereby forming an annular space (annulus) 115 between the wellbore 106 wall and the drill string 112, and/or between a casing 101 and the drill string 112. The drill string 112 is used to convey a drilling fluid 150 (shown in a storage tank or pit 136 to the bottom of the wellbore 106 and into the wellbore annulus 115.
The drill string 112 may support a bottom hole assembly (BHA) 113 proximate the lower end thereof that includes a drill bit 120, and may include a mud motor 118, a sensor package 119, a check valve (not shown) to prevent backflow of drilling fluid from the annulus 115 into the drill string 112. The sensor package 119 may be, for example, a measurement while drilling and logging while drilling (MWD/LWD) sensor system. In particular the BHA 113 may include a pressure transducer 116 to measure the pressure of the drilling fluid in the annulus at the depth of the pressure transducer 116. The BHA 113 shown in
The drilling fluid 150 may be stored in a reservoir 136, which is shown in the form of a mud tank or pit. The reservoir 136 is in fluid communications with the intake of one or more mud pumps 138 that in operation pump the drilling fluid 150 through a conduit 140. A flow meter 152 may be provided in series with one or more mud pumps 138. The conduit 140 is connected to suitable pressure sealed swivels (not shown) coupled to the uppermost segment (“joint”) of the drill string 112. During operation, the drilling fluid 150 is lifted from the reservoir 136 by the pumps 138, is pumped through the drill string 112 and the BHA 113 and exits the through nozzles or courses (not shown) in the drill bit 120, where it circulates the cuttings away from the bit 120 and returns them to the surface through the annulus 115. The drilling fluid 150 returns to the surface and passes through a drilling fluid discharge conduit 124 and in some embodiments through various surge tanks and telemetry receiver (e.g., a pressure sensor—not shown) to be returned, ultimately, to the reservoir 136.
A pressure isolating seal for the annulus 115 is provided in the form of a rotating control device (RCD) mounted above a blowout preventer (“BOP”) 142. The drill string 112 passes through the BOP 142 and its associated RCD. When actuated, the RCD seals around the drill string 112, isolating the fluid pressure therebelow, but still enables drill string rotation and longitudinal movement. Alternatively a rotating BOP (not shown) may be used for essentially the same purpose. The pressure isolating seal forms a part of a back pressure system used to maintain a selected fluid pressure in the annulus 115.
As the drilling fluid returns to the surface it passes through a side outlet below the RCD to a back pressure system 131 configured to provide an adjustable back pressure on the drilling fluid in the annulus 115. The back pressure system 131 comprises a variable flow restriction device, in some embodiments in the form of a controllable orifice choke 130. It will be appreciated that there exist chokes designed to operate in an environment where the drilling fluid 150 contains substantial drill cuttings and other solids. The controllable orifice choke 130 may one type of a variable flow restriction device and is further capable of operating at variable pressures, flow rates and through multiple duty cycles.
The drilling fluid 150 exits the controllable orifice choke 130 and flows through a flow meter 126, which may then be directed through an optional degasser 1 and solids separation equipment 129. The degasser 1 and solids separation equipment 129 are designed to remove excess gas and other contaminants, including drill cuttings, from the returning drilling fluid 150. After passing through the degasser 1 and solids separation equipment 129, the drilling fluid 150 is returned to reservoir 136. In the present example, the drilling fluid reservoir 136 comprises a trip tank 2 in addition to the mud tank or pit 136. A trip tank may be used on a drilling rig to monitor drilling fluid gains and losses during movement of the drill string into and out of the wellbore 106 (known as “tripping operations”).
Various valves 5, 125 and lines 4, 119, 119A, 119B may be provided to operate the back pressure system 131 if and as needed.
The flow meter 126 may be a mass-balance type, Coriolis-type or other high-resolution flow meter. A pressure sensor 147 may be provided in the drilling fluid discharge conduit 124 upstream of the variable flow restrictor (e.g., the controllable orifice choke 130). A second flow meter, similar to flow meter 126, may be placed upstream of the RCD in addition to the pressure sensor 147. The back pressure system 131 may comprise a control system 146 for monitoring measurements from the foregoing sensors (e.g., flow meters 126 and 152 and pressure transducer 147). The control system 146 may provide operating signals to selectively control To enable data relevant for the annulus pressure, and providing control signals to at least a back pressure system 131 and in some embodiments to the mud pumps 138.
The back pressure system 131 may comprise the controllable orifice choke 130, flow meter 126 and a secondary pump 128. Signals from the above described sensors may be conducted to a control unit 146. Control signals from the control unit 146 may be conducted to the mud pump(s) 138, the secondary pump 128 and the controllable orifice choke 130 During operation of the drilling system, if the drilling fluid pump 138 is operating, the back pressure system 131 may provide a selected pressure in the annulus 115 by operating the controllable orifice choke 130 to restrict the flow of drilling fluid 150 leaving the annulus 115. During times when the drilling fluid pump 138 is not operating, the secondary pump 128 may provide drilling fluid under pressure to the annulus 115 to maintain the selected fluid pressure.
In some embodiments, a selected fluid pressure may be applied to the annulus 115 to maintain the desired annulus in the wellbore 106 by obtaining, at selected times, measurements related to the existing pressure of the drilling fluid in the annulus 115 in the vicinity of the BHA 113 using the pressure transducer 116 or similar pressure sensor. Such pressure measurement may be referred to as the bottom hole pressure (BHP). Differences between the determined BHP and the desired BHP may be used for determining a set-point back pressure. The set point back pressure is used for controlling the back pressure system 131 in order to establish a back pressure close to the set-point back pressure. Information concerning the fluid pressure in the annulus 115 proximate the BHA 113 may be determined using an hydraulic model and measurements of drilling fluid pressure as it is pumped into the drill string and the rate at which the drilling fluid is pumped into the drill string (e.g., using a flow meter or a “stroke counter” typically provided with piston type mud pumps). The BHP information thus obtained may be periodically checked and/or calibrated using measurements made by the pressure transducer 116.
In other embodiments, an injection fluid supply 143 which may comprise a storage tank and one or more injection pumps (not shown separately) may use a pressure measurement generated by an injection fluid pressure sensor anywhere in the injection fluid supply passage, e.g., at 156, may be used to provide an input signal for controlling the back pressure system 131, and thereby for monitoring the drilling fluid pressure in the wellbore annulus 115.
The pressure signal may, if so desired, be compensated for the density of the injection fluid column and/or for the dynamic pressure loss that may be generated in the injection fluid between the injection fluid pressure sensor in the injection fluid supply passage and where the injection into the drilling fluid return passage takes place, for instance, in order to obtain an exact value of the injection pressure in the drilling fluid return passage at the depth where the injection fluid is injected into the drilling fluid gap.
The described existing MPD system is effective, however there are limitations inherent to the use of RCDs in controlling fluid leaving a wellbore. It is desirable to provide control of fluid pressure in a wellbore (i.e., annulus) without the need to use RCDs or similar rotating pressure control devices at the upper end of the well.
An example embodiment of a well drilling system 100 that may be used with a well fluid discharge control may be better understood with reference to
Components of the example embodiment of the well drilling system in
The well fluid outflow control 135 will be further explained below with reference to
One example embodiment of a well outflow control is shown schematically in
For land drilling, or for marine drilling with an open riser, the components shown in
Control of well pressure may be performed automatically by accepting as input to the control system (146 in
An example embodiment of an opposed-element pipe ram 10 is shown in cut away (with housing omitted to show the active components) side view in
Another possible embodiment of a well fluid outflow control using pipe rams 10 is shown in top view in
In some embodiments, a ram system (defined above) for one or more pipe rams 10 may be changeable without the need to remove the housing 11D from its installed position. See
The two carousels 50 shown in
A non-limiting example of a ram system that may be used in some embodiments is described in U.S. Pat. No. 6,554,247 issued to Berckenhoff et al. and incorporated herein by reference A non-limiting example embodiment of a linear actuator and ram system servicing device that may be used in the carousel 50 are shown in U.S. Pat. No. 7,121,348 issued to Hemphill et al. and incorporated herein by reference.
A well fluid outflow control according to the various aspects of the present disclosure may enable performing managed pressure drilling (MPD) without the need to use a rotating control device or similar rotating sealing element. Such capability may eliminate the time and expense of repair and maintenance of rotating control devices.
While the present disclosure describes a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of what has been disclosed herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.
This application claims the benefit of and priority to a US Provisional Application having Ser. No. 62/437,831, filed 22 Dec. 2016, which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/065966 | 12/13/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/118550 | 6/28/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6554247 | Berckenhoff et al. | Apr 2003 | B2 |
6904891 | Tominaga et al. | Jun 2005 | B2 |
6904981 | van Riet | Jun 2005 | B2 |
7121348 | Hemphill et al. | Oct 2006 | B2 |
7395878 | Reitsma et al. | Jul 2008 | B2 |
7562723 | Reisma | Jul 2009 | B2 |
9476271 | Judge et al. | Oct 2016 | B2 |
20050242309 | Brugman | Nov 2005 | A1 |
20060243451 | Hemphill | Nov 2006 | A1 |
20130140034 | Ghasripoor et al. | Jun 2013 | A1 |
20140090888 | Smith et al. | Apr 2014 | A1 |
20150176347 | Bansal et al. | Jun 2015 | A1 |
20150240581 | Nicholson | Aug 2015 | A1 |
20160097248 | Mathieson | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2478119 | Aug 2011 | GB |
2019681 | Sep 1994 | RU |
2011084153 | Jul 2011 | WO |
2016054364 | Apr 2016 | WO |
Entry |
---|
International Preliminary Report on Patentability for the equivalent International patent application PCT/US2017/065966 dated Jul. 4, 2019. |
“Ram Preventers as Well Control Equipment,” retrieved on Jun. 13, 2019 at http://www.drillingformulas.com/ram-preventers-as-well-control-equipment/. |
International Search Report and Written Opinion for the equivalent International patent application PCT/US2017/065966 dated Mar. 22, 2018. |
Extended Search Report for the counterpart European patent application 17884864.4 dated Jun. 25, 2020. |
Number | Date | Country | |
---|---|---|---|
20200087998 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62437831 | Dec 2016 | US |