The present invention relates to pipeline connectors and, more particularly, to mechanical pipeline connectors for use in pipeline repairs.
When a pipe runs on a sea bottom, it is fairly common for pipe fractures to occur. When a pipe fractures, the section of damaged pipe needs to be repaired to restore service to the sub-sea pipeline. To repair the damaged pipe, the damaged section is first removed (e.g., via cutting, etc.) to make way for a new pipe section. To restore service, a new pipe section needs to be connected to the undamaged original pipe sections, for example, by a mechanical pipe connector with gripping and sealing mechanisms (e.g., a ball and taper mechanism, opposing serrated sliding wedges, etc.).
For deep-water pipeline repairs, connectors with integrated hydraulics are often used to grip the existing pipeline subsea and form a seal with newly installed pipe. One example of such a connector is shown and described in U.S. Patent Application Publication No. US 2010/0047023 A1, published Feb. 25, 2010, the contents of which are hereby incorporated by reference.
During deep-water pipeline repair, as discussed in U.S. Patent Application Publication No. US 2010/0047023, an installation frame is typically used to lower and properly position the connector. When properly positioned, a remotely operated vehicle (ROV) stabs into the connector to actuate the integrated hydraulics to attach and seal the connector to the pipe. The installation frame is ultimately detached from the connector and returned to the surface.
These existing mechanical pipe connectors are relatively expensive due to the incorporation of the hydraulic cylinders and controls that remain with the connector on the sea bottom after activation.
In one independent aspect, a pipe connector and frame may be provided for connecting pipes, and hydraulic cylinders and controls may generally be included on the frame. During installation, the hydraulics on the frame activate the pipe connector, forming a seal between the connector and the pipe. The hydraulics, along with the frame, are returned to the surface after activation.
In another independent aspect, a subsea pipeline repair system may generally include a frame having at least one hydraulic cylinder and a connector selectively coupled to the frame. The connector has compression activated sealing members for forming a seal with a pipeline needing repair. The connector has a first state, in which the sealing members are not in a sealed position with respect to the pipeline, and a second state, in which the sealing members are moved to a sealed state via application of a compressive force by the hydraulic cylinder. During repair of the pipeline, the frame and connector are coupled together during installation of the connector on the pipeline, and a remotely operated vehicle interfaces with the frame to actuate the hydraulic cylinder which then compresses the sealing members of the connector into sealing engagement with the pipeline. Upon complete installation of the connector, the frame and hydraulic cylinder disconnect from the connector.
In a further independent aspect, a method of remotely installing a connector on a pipeline using a remotely operated vehicle may be provided. The method may generally include providing a connector requiring actuation of sealing members from a first position to a second position to form a sealing engagement with the pipeline, the connector having no independent actuation means, and providing an activation frame having hydraulics and controls for installing and activating the connector. The method may further include coupling the connector to the actuation frame, lowering the connector and actuation frame from a surface to the pipeline, positioning the connector and actuation frame along the pipeline, actuating the hydraulics on the frame with the remotely operated vehicle, moving the sealing members in the connector from the first position to the second position with the hydraulics of the frame to form a sealing engagement between the connector and the pipeline, disconnecting the frame from the connector, and returning the frame with the hydraulics to the surface.
In a further independent aspect, an activation frame for use by a remotely operated vehicle to activate a subsea pipeline repair connector may be provided. The repair connector may be a compression activated type connector having an outer sleeve defining a cavity and an inner sleeve received within the cavity, movement of the inner sleeve relative to the outer sleeve forcing the sealing members into sealing engagement with the pipeline. The activation frame may generally include a support, a bracket connected to the support, and a hydraulic cylinder coupled to the bracket and slidably supported by the support to engage and selectively move the inner sleeve relative to the outer sleeve of the connector to compress sealing members within the cavity of the connector.
Other independent features and independent advantages of the invention may become apparent to those skilled in the art upon review of the detailed description, claims and drawings.
Before any independent embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other independent embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Use of “including” and “comprising” and variations thereof as used herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Use of “consisting of” and variations thereof as used herein is meant to encompass only the items listed thereafter and equivalents thereof.
As an example, the connector 10 may be used in the repair of pipelines and may receive the ends of two pipes 12, 14 to be connected together. The connector 10 is configured to grip onto and fluidly couple the first pipe 12 and the second pipe 14 in the pipeline to be repaired.
The pipe connector 10 defines a longitudinal axis A and a cavity. The connector 10 includes an outer sleeve 16 with a first end 18, a central portion 20, and a second end 22, and each end 18, 22 slidably receives an inner sleeve 24 along the axis A. The inner sleeves 16 move axially inwardly and outwardly with respect to the outer sleeve 12 for compressing various components held within the cavity. The outer sleeve 16, the inner sleeves 24, and other components of the connector 10 each define a cylindrical opening or bore 26 for receiving the end of at least one of the pipes 12, 14.
In the illustrated construction, the central portion 20, which receives the ends of the pipes 12, 14, is formed separately from the first end 18 and the second end 22 of the outer sleeve 16. In other constructions (not shown), the central portion may be formed with the first end 18 and the second end 22 to form the outer sleeve 16 as a singled piece.
An inner race 32 is received within but spaced apart from each inner sleeve 24 and coaxial with axis A. Each inner race 32 has a plurality of spaced apart openings 34 distributed uniformly about the circumference and arranged in one or more axially-spaced rows. A number of ramp rings 36, including annular ramps 38 (corresponding to the number of rows), are located adjacent to one another and slidably received radially between the inner race 32 and the inner sleeve 24. Each ramp 38 is positioned to radially align with a row of openings 34 in the inner race 32. The ramp ring 36 nearest the end of the inner sleeve 24 is pushed into engagement against the inner sleeve 24 by a radially expanding inner race locking ring 42.
A radially-activated plunger or indent pin 52 is slidably secured in each of the openings 34 and located adjacent a ramp 38 on a respective ramp ring 36. As illustrated in
In some constructions, the indent pins 52 may be profiled (e.g., etched, grooved, serrated, etc. at least on the engaging end) to resist decoupling of the connector 10 and pipes 12, 14. In some applications, different length pins 52 may be used for contacting out-of-round pipes (
Pipe can be damaged by, for example, deep water pipe laying methods shown in
The inner sleeve 24 has a reduced diameter at its end, formed by a radially inward extending flange 54. The flange 54 abuts an adjacent ramp ring 36, holding the ramp rings 36 between the inner race 32 and the inner sleeve 24. In the illustrated construction, the flange 54, however, only partially covers the ramp ring 36 at the end of the connector 10, allowing a mechanism or activation unit to access the ramp rings 36, as further explained below.
A spacer 56, sometimes called a seal and indent pin spacer, is received within the outer sleeve 16, axially between the end of the inner sleeve 24 and the central portion 20. The spacer 56 is held in against the inner end of the inner sleeve 24 and moves axially inwardly when the inner sleeve 24 is also moved axially inwardly. The spacer 56 has an annular, axially-extending protrusion 58 received within an annular, axially-extending groove 60 in the central portion 20, guiding relative movement of the spacer 54 and the central portion 20.
A replaceable annular seal insert 62 and a seal insert spacer 64 are located between the spacer 54 and the central portion 20 and compress therebetween an expandable seal 66. Another seal 66 is located on the other side of the seal insert spacer 64 to also be compressed. When the inner sleeves 24 and the spacers 56 move axially inwardly (i.e., toward the central portion 20), the material of the seals 66 compresses between the spacer 56 and the central portion 20. Compression of the seals 66 causes them to radially expand to engage the inner surface of the central portion 20 and the outer surface of the pipe(s) 12, 14.
The illustrated seals 66 may be of the type used in the commercially available line of engineered mechanical subsea connectors manufactured by Hydratight Limited. The seal 66 may be, for example, 98% pure exfoliated graphite. The seals 66 may include a laminate graphite sheet and/or be ribbon spun or spiral-wound around a mandrel into a mold that can be subsequently manipulated into a suitable construction (e.g., size, shape, etc.) for the connector 10. In other constructions, the seal 66 may include any of a variety of other seal packing materials.
One or more anti-extrusion rings may prevent the seals 66 from extruding into gaps between the pipes 12, 14 and adjacent components of the connector 10 during compression. The anti-extrusion rings can close down onto (i.e., move radially inwardly with respect to) the pipes 12, 14.
An isolating valve 68, assembled as part of a connector cover 70, is used with a fluid line (e.g., air) to test the space between the seals 66 to insure the seals 66 have activated properly to create an fluid-tight pressurized seal. To confirm that the connector 10 has been installed correctly, the space between each seal 66, at each end of the connector 10, can be accessed by the isolating valve 68 and pressurized to a desired hydraulic pressure. The hydraulic pressure is held for an appropriate length of time to confirm seal integrity of the connector 10.
The spacer 56 also defines an annular ring slot 76 adjacent to an annular ring receiving groove 78 formed in the outer sleeve 16, as illustrated in
During the assembly, installation, and activation process, the split ring 80 is compressed, and the inner sleeve 24 and assembled spacer 54 and split ring 80 are slid into the outer sleeve 16 of the connector 10, as illustrated in
The illustrated activation system 102, further explained below, accesses the ramp rings 36 at the end of the connector 10 in order to move the ramp rings 36 towards the center portion 20 (
Thereafter, a shim 86, which normally spaces the inner sleeve 24 from the end of the outer sleeve 16 by a shim gap and prevents the inner sleeve 24 from prematurely moving during final operation, is removed (
As illustrated in
To connect the connector 10 to the pipes 12, 14, the activation frame 10 (
The activation frame 102 includes a support 104 and a horseshoe-shaped platen 106 at each support end. A bracket 108 is connected to each support end, and a pair of hydraulic cylinders 110 (e.g., an inner ram and an outer ram) is supported by each bracket 108. One end of each hydraulic cylinder 110 is secured to the bracket 108, and the other end of each hydraulic cylinder 110 is slidably supported by the support 104. The horseshoe-shaped platens 106 can be used to align the frame to the pipe. The horseshoe-shaped platens 106 include slots to allow assembly and disassembly on the pipe. The frame 102 further includes “buckets” or guide cones for aligning the frame 102 to the pipe.
Extension of the cylinders 110 moves the platen 106 toward the central portion 20 of the outer sleeve 16, in turn moving the ramp rings 36, and the inner sleeves 24 axially inwardly. As discussed above, movement of the ramp rings 36 causes the ramps 38 to push the indent pins 52 radially inwardly towards the pipes 12, 14 to grip and secure the pipe ends inside the connector 10, as shown in
The activation frame 102 is intended to house all (or substantially all) the hydraulics and controls necessary for installation of the connector 10. After installation is completed, the activation frame 102 is disconnected, leaving only the connector 10 on the pipes 12, 14 (
The components of the connector 10 are compatible with the material of the pipeline and with the media carried by the pipeline. In some constructions, the structural components may be formed of suitable materials, such as, for example, steel, stainless steel, carbon steel, etc.
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the invention as described above.
One or more independent features and/or independent advantages of the invention may be set forth in the following claims.
The present application claims priority to U.S. Patent Application No. 62/055,892, filed Sep. 26, 2015, the entire contents of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/052695 | 9/28/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62055892 | Sep 2014 | US |