The present disclosure relates generally to devices for use in a wellbore in a subterranean formation and, more particularly (although not necessarily exclusively), to tools powered or actuated by pipe swell.
Various devices can be installed in a well traversing a hydrocarbon-bearing subterranean formation. Several devices can be actuated within the well in order to perform specific functions. Prior solutions for actuating devices positioned in a wellbore may include assemblies having multiple components. Such solutions may increase the cost or complexity (or both) of actuating downhole tools.
Simplified mechanisms for actuating downhole tools are desirable.
Certain aspects of the present disclosure are directed to tools powered or actuated by pipe swell. A pipe positioned in a wellbore can be used for communicating fluid at a different pressure level from a fluid surrounding the pipe. Modifying the difference between the internal and external pressure can cause the pipe to expand or contract and change the volume of the pipe. A non-expanding barrier can be coupled with the pipe to store pressurized fluid in the changed volume. The stored pressurized fluid can be utilized as a pressure source to actuate downhole tools.
In some aspects, a downhole assembly for a wellbore can utilize expansion of a pipe to actuate a downhole tool. The downhole assembly can include a first sleeve that can expand from a first position to a second position in response to a pressure applied to the first sleeve. The first sleeve can contract to the first position in response to a cessation of the pressure. The assembly can also include a second sleeve adjacent to the first sleeve. The first sleeve and the second sleeve can together define a swell chamber. The second sleeve may be circumferentially aligned with the first sleeve. The second sleeve can expand less than the expansion of the first sleeve in response to the pressure being applied to the second sleeve. The combined expansion of the first and the second sleeve can increase the volume of pressurized fluid stored in the swell chamber between the first and the second sleeves. The swell chamber can actuate a downhole tool via a pressure stored in the swell chamber. The pressure can be stored by the expansion of the first sleeve.
These illustrative examples are given to introduce the reader to the general subject matter discussed here and are not intended to limit the scope of the disclosed concepts. The following sections describe various additional aspects and examples with reference to the drawings in which like numerals indicate like elements, and directional descriptions are used to describe the illustrative aspects. The following sections use directional descriptions such as “above,” “below,” “upper,” “lower,” “upward,” “downward,” “left,” “right,” “uphole,” “downhole,” etc. in relation to the illustrative aspects as they are depicted in the figures, the upward direction being toward the top or left of the corresponding figure and the downward direction being toward the bottom or right of the corresponding figure, the uphole direction being toward the surface of the well and the downhole direction being toward the toe of the well. Like the illustrative aspects, the numerals and directional descriptions included in the following sections should not be used to limit the present disclosure.
The tubing string 112 within wellbore 102 extends from the surface to the subterranean formation 110. The tubing string 112 can provide a conduit for formation fluids, such as production fluids produced from the subterranean formation 110, to travel from the substantially horizontal section 106 to the surface. Pressure from a bore in a subterranean formation 110 can cause formation fluids, including production fluids such as gas or petroleum, to flow to the surface.
The well system 100 can also include one or more pipe swell tools 116. Pressure applied to the pipe swell tool 116 can provide a force for powering or actuating a tool in the tubing string 112. In some aspects, the pipe swell tool 116 and the tool powered or actuated by the pipe swell tool 116 can form a single assembly. In other aspects, the pipe swell tool 116 can be a separate assembly that can be coupled with the tool to provide power or actuation by the pipe swell tool 116.
Although
The outer sleeve 206 can be cylindrical. For example, the outer sleeve 206 may be a portion of tubing 112. The inner sleeve 204 can also be cylindrical. The inner sleeve 204 can be sized such that the inner sleeve 204 can fit within the outer sleeve 206. The inner sleeve 204 can be coupled to the outer sleeve 206.
The swell chamber 202 can be defined by the inner sleeve 204 and the outer sleeve 206. The inner sleeve 204 and the outer sleeve 206 can define boundaries of the swell chamber 202. The swell chamber 202 can be sealed such that fluid is restricted from entering or exiting the swell chamber 202 via a passage 216. The outer sleeve 206 can prevent fluid communication between the swell chamber 202 and an outer region 212 located adjacent to the outer sleeve 206. For example, the outer sleeve 206 can prevent fluid communication between the swell chamber 202 and an annulus between the tool 116 and a wall of the wellbore 102. The inner sleeve 204 can prevent fluid communication between the swell chamber 202 and an inner region 214 located adjacent to the inner sleeve 204. For example, the inner sleeve 204 can prevent fluid communication between the swell chamber 202 and an internal section of the tubing 112.
The inner sleeve 204 can include flanges 208a, 208b. The flanges 208a, 208b can extend from the inner sleeve 204 toward the outer sleeve 206 to further define the swell chamber 202. The seals 210a, 210b can circumferentially surround the flanges 208a, 208b, respectively. Non-limiting examples of the seals 210a, 210b include O-rings, V-rings, etc. The seals 210a, 210b can provide a seal between the inner sleeve 204 and the outer sleeve 206. The seals 210a, 210b or other suitable seals can be formed from any suitable flexible material, such as rubber. The flexible material can expand or contract in response to expansion or contraction of the inner sleeve 204 or the outer sleeve 206. In some aspects, expansion or contraction of the flexible material may maintain the seal between the inner sleeve 204 and the outer sleeve 206. The inner sleeve 204 having flanges 208a, 208b, the outer sleeve 206, and the seals 210a, 210b can provide fluid-tight boundaries for the swell chamber 202.
A passage 216 can be defined in a boundary of the swell chamber 202. The passage 216 can provide a path for fluid to enter or exit the swell chamber 202. In some aspects, fluid flow through the passage 216 can be restricted. As non-limiting examples, fluid flow through the passage 216 can be restricted by an aperture, a channel, a metering device, a check valve, etc. positioned in or adjacent to the passage 216. Fluid flow through the passage 216 can be restricted in one or both directions. In a non-limiting example, fluid flow out of the swell chamber 202 via the passage 216 may be restricted.
Communication of pressure between the inner region 214 and the swell chamber 202 via the passage 216 can cause the pressure level in the swell chamber 202 to be equal or approximately equal to the pressure level in the inner region 214 at equilibrium. The pressure within the swell chamber 202 and the pressure in the inner region 214 can be exerted on opposite sides 222 and 224 of the inner sleeve 204. The minimal or zero difference in pressures on opposite sides 222 and 224 of the inner sleeve 204 at equilibrium can cause a minimal or zero pressure differential across the inner sleeve 204. In some aspects, the minimal or zero pressure differential can allow the inner sleeve 204 to remain rigid or otherwise prevent the inner sleeve 204 from deforming. For example, the inner sleeve 204 may be sufficiently rigid such that a pressure differential may be too low to cause expansion or other deformation of the inner sleeve 204. In other aspects, the minimal pressure differential can cause the inner sleeve 204 to expand toward the outer sleeve 206. The amount of expansion of the inner sleeve 204 toward the outer sleeve 206 can be less than the amount of expansion of the outer sleeve 206 in the same direction. A difference in the amount of the expansion of the inner sleeve 204 and the expansion of the outer sleeve 206 can be due to the smaller magnitude of the pressure differential exerted on the inner sleeve 204 in comparison to the pressure differential exerted on the outer sleeve 206.
Expansion of the outer sleeve 206 can increase the volume in the swell chamber 202. The additional volume can be filled with fluid communicated from the inner region 214 to the swell chamber 202 via the passage 216. The passage 216 can be sealed or restricted to store the additional volume of fluid in the swell chamber 202. The additional volume of fluid can be maintained in the swell chamber 202 as a stored source of pressure.
A housing 226a can be positioned proximate to the outer sleeve 206. The housing 226a can be positioned sufficiently close to the outer sleeve 206 such that expansion of the outer sleeve 206 can cause the outer sleeve 206 to contact the housing 226a. Contact between the housing 226a and the outer sleeve 206 can limit the amount by which the outer sleeve 206 can expand. Limiting expansion of the outer sleeve 206 can prevent the outer sleeve 206 from expanding to a point at which the outer sleeve 206 may rupture or otherwise be damaged.
In some aspects, expansion of the outer sleeve 206 can cause the housing 226a to expand. A secondary housing 226b can be positioned adjacent to the housing 226a. The secondary housing 226a can be positioned sufficiently close to the housing 226a such that expansion of the housing 226a can cause the housing 226a to contact the secondary housing 226b. Contact between the housing 226a and the secondary housing 226b can limit the amount by which the housing 226a can expand. In some aspects, one or more successively larger housings positioned external to the housings 226a, 226b, etc. can be nested to limit expansion to a point of rupture or damage. Utilizing multiple housings 226a, 226b can allow greater levels of pressure to be exerted upon the outer sleeve 206 without causing expansion of the outer sleeve 206 to a point of rupture or damage. In some aspects, one or more of the housings 226a, 226b can be omitted.
Although
Pressure stored in a swell chamber 202 or 202′ can be used to actuate downhole tools. For example,
The inner sleeve 304 can be coupled to the outer sleeve 306. The swell chamber 302 can be positioned between the inner sleeve 304 and the outer sleeve 306. The inner sleeve 304 and the outer sleeve 306 can define boundaries of the swell chamber 302.
Seals 310, 311 (e.g., O-rings, V-rings, etc.) can be positioned between the inner sleeve 304 and the outer sleeve 306. Positioning the seals 310, 311 between the inner sleeve 304 and the outer sleeve 306 can provide a fluid-tight seal for the swell chamber 302. The seals 310, 311 can be positioned between the inner sleeve 304 and thicker portions 303, 305 of the outer sleeve 306 that do not substantially expand or contract. Positioning the seals 310, 311 between the inner sleeve 304 and portions 303, 305 of the outer sleeve 306 can maintain the seal between the inner sleeve 304 and the outer sleeve 306 without substantial expansion or contraction of the seals 310, 311.
The swell chamber 302 can be in fluid communication with a passage 316. The passage 316 can provide fluid flow between the swell chamber 302 and an inner region 314 of the pipe swell tool 116′. Although
The passage 316 can include a metering mechanism 336. The metering mechanism 336 can limit the rate of fluid flow between the inner region 314 and the swell chamber 302. For example, the metering mechanism 336 can include a small aperture that can limit the amount of fluid that may flow through the aperture at once.
The inner sleeve 304 can be coupled with the shifting mechanism 334. Movement of inner sleeve 304 can cause movement of the shifting mechanism 334. Movement of the shifting mechanism 334 can engage certain shifting features 338 positioned on the sliding sleeve 332. A non-limiting example of a shifting mechanism 334 is a ratcheting mechanism, such as (but to limited to) a spring-loaded pawl having an angled side to push the pawl out of interference with a tooth when the tooth is moved in a first direction and flat side to lock the pawl against the tooth when the tooth is moved in a second direction.
The sliding sleeve 332 can be positioned within the pipe swell tool 116′. The sliding sleeve 332 can include ports 340 and 342. The ports 340 and 342 can provide fluid flow between the inner region 314 and the inner sleeve 304.
The snap ring 335 can be positioned within the pipe swell tool 116′. The snap ring 335 can be positioned to contact the sliding sleeve 332. The snap ring 335 may include teeth that can contact the sliding sleeve 332. Contact between the snap ring 335 and the sliding sleeve 332 can inhibit movement of the sliding sleeve 332 in one direction. For example, the snap ring 335 may permit movement of the sliding sleeve 332 in the direction depicted by the leftward arrow in
A first end 315 of the inner sleeve 304 can have a larger amount of surface area than a second end 317 of the inner sleeve 304. For example, as depicted in
A net pressure applied to the greater surface area of the first end 315 of the inner sleeve 304 can cause the inner sleeve 304 to move. The difference between the greater pressure in the inner region 314 and the lesser pressure in the swell chamber 302 can exert a net pressure on the first end 315 of the inner sleeve 304. The net pressure exerted on the first end 315 can cause the inner sleeve 304 to move in the direction depicted by the leftward arrow in
A pressure decrease can be introduced into the inner region 314. For example, a section pressure of tubing 112 can be decreased via a control line or by directly decreasing the tubing pressure in an inner diameter of the tubing 112 at the well surface. The decreased pressure in the inner region 314 can cause fluid to flow from the swell chamber 302 into the inner region 314. The metering device 336 can restrict the flow of fluid from the swell chamber 302 into the inner region 314. Restricting the flow of fluid from the swell chamber 302 into the inner region 314 can store a volume of fluid in the swell chamber 302. Storing the volume of fluid in the swell chamber 302 can produce a pressure difference between the inner region 314 and the swell chamber 302. The pressure difference between the inner region 314 and the swell chamber 302 can cause the swell chamber 302 to have a greater pressure than the level of pressure in the inner region 314.
The difference between the lesser pressure in the inner region 314 and the greater pressure in the swell chamber 302 can exert a net pressure on the first end 315 of the inner sleeve 304. The net pressure can cause the inner sleeve 304 to move in the direction depicted by the rightward arrow in
The metering device 336 in the passage 316 can provide a limited flow of fluid to the inner region 314 from the swell chamber 302. Passage of fluid from the swell chamber 302 can reduce the pressure in the swell chamber 302. Reducing the pressure in the swell chamber 302 can allow outer sleeve 306 to contract toward the position depicted in
In some aspects, the sliding sleeve 332 can be incrementally moved regardless of the pressure outside of the pipe swell tool 116′. For example, the pipe swell tool 116′ can be actuated for implementations in which a pressure in an annulus between the formation 110 and the pipe swell tool 116′ has negligible pressure.
In additional or alternative aspects, a leak occurring at one or more of the seals 310, 311 may produce a leak limited to the interior of the tool 116′ and avert a leak between the tubing 112 and the annulus formed between the formation 110 and the tubing 112.
Although the inner sleeve 304 is described with regard to
The pressure level in the chamber 444 can be controlled by a control line 454. The chamber 444 can be connected to the control line 454. The control line 454 can control the pressure level in the chamber 444 by communicating fluid into or out of the chamber 444. The chamber 444 can be adjacent to the piston 448. The chamber 444 can be in fluid communication with a check valve 446.
The check valve 446 can allow fluid flow from the chamber 444 to the swell chamber 402. The check valve 446 can prevent or restrict fluid flow from the swell chamber 402 to the chamber 444. For example, the check valve 446 may include a ball that is pushed into sealing contact with an orifice. A pressure in the swell chamber 402 that is higher than the pressure in the chamber 444 can cause the ball to seat over the orifice such that flow is prevented through the orifice. A pressure in the chamber 444 that is higher than the pressure in the swell chamber 402 can move the ball away from the orifice such that flow is allowed through the orifice.
The swell chamber 402 can include an outer sleeve 406 coupled with an inner sleeve 404. The swell chamber 402 can be positioned between the inner sleeve 404 and the outer sleeve 406. The inner sleeve 404 and the outer sleeve 406 can define boundaries of the swell chamber 402. Part or all of the outer sleeve 406 can expand in response to a fluid flow from the chamber 444 to the swell chamber 402. In some aspects (such as depicted in
The swell chamber 402 can be in fluid communication with a port 456. The port 456 can be in fluid communication with the piston 448.
The piston 448 can include a first piston head 458. The first piston head 458 of the piston 448 can be in fluid communication with the chamber 444. The first piston head 458 can be in fluid communication with the port 456. The first piston head 458 can include a first seal 460 to prevent fluid flow between the chamber 444 and the port 456 along the first piston head 458. As a non-limiting example, the first seal 460 may include an O-ring.
The piston 448 can include a second piston head 462. The second piston head 462 of the piston 448 can be in fluid communication with the port 456. The second piston head 462 can be in fluid communication with a rod chamber 464. The second piston head 462 can include a second seal 466 to prevent fluid flow between the port 456 and the rod chamber 464 along the second piston head 462. As a non-limiting example, the second seal 466 may include an O-ring.
An annulus 468 can include a space along the piston 448 and between the first piston head 458 and the second piston head 462 of the piston 448. The annulus 468 can provide fluid flow between the port 456 and the first piston head 458. The annulus 468 can provide fluid flow between the port 456 and the second piston head 462.
The piston 448 can include a rod 470 extending into the rod chamber 464. The rod 470 can extend from the second piston head 462. The rod 470 can be connected to the flow tube 450. Connection of the rod 470 and the flow tube 450 can allow movement of the rod 470 to cause movement of flow tube 450.
The flow tube 450 can be positioned within the tubing 112. The flow tube 450 can be positioned adjacent to the flapper 452. Movement of the flow tube 450 can cause movement of the flapper 452. The flapper 452 can move between an open position and a closed position. The flapper 452 in the open position may allow fluid flow in the tubing 112. The flapper 452 in the closed position can block fluid flow in the tubing 112. The flapper 452 is depicted in
Pressure in the chamber 444 can be increased. For example, fluid may be introduced into the chamber 444 via the control line 454. Increasing the pressure in the chamber 444 can cause the check valve 446 to open. Opening the check valve 446 can allow fluid to flow into the swell chamber 402. Fluid flow from the chamber 444 into the swell chamber 402 can cause the outer sleeve 406 to expand. Expanding the outer sleeve 406 can increase a volume in the swell chamber 402. Increasing the volume of the swell chamber 402 can allow additional fluid to flow from the chamber 444 into the swell chamber 402.
Fluid can also be communicated from the chamber 444 to the annulus 468 via the open check valve 446 and the port 456. Fluid flow from the chamber 444 to the annulus 468 can allow a pressure in the annulus 468 to be equal or approximately equal to a pressure in the chamber 444. The equal or approximately equal pressure applied to either side of the first piston head 458 can have a negligible effect on the position of the piston 448. Fluid flow from the chamber 444 to the annulus 468 can also cause a pressure in the annulus 468 to be greater than a pressure in the rod chamber 464. The difference in pressure between the higher pressure in the annulus 468 and the lower pressure in the rod chamber 464 can urge the piston 448 in the rightward direction of
Pressure in the chamber 444 can be decreased. For example, fluid pressure in the chamber 444 can be regulated via the control line 454. Decreased pressure in the chamber 444 can decrease the amount of fluid flow from the chamber 444 to the swell chamber 402 via the check valve 446. Decreasing the amount of fluid flow via the check valve 446 can cause the check valve 446 to close. Closing the check valve 446 can prevent fluid flow from the swell chamber 402 into the chamber 444. Preventing fluid flow to the chamber 444 from the swell chamber 402 can cause the pressure level in the chamber 444 to be lower than the pressure level in the swell chamber 402. The pressure level in the swell chamber 402 can be communicated to the annulus 468 via the port 456. A lower pressure in the chamber 444 relative to the annulus 468 can exert a force on the first piston head 458. The force exerted on the first piston head 458 can cause the piston 448 to move in the direction depicted by the leftward arrow in
Movement of the piston 448 can increase the volume of the annulus 468. Increasing the volume of the annulus 468 can allow the additional volume of fluid stored in the swell chamber 402 to be communicated via the port 456 to the annulus 468. Introducing the additional volume into the annulus 468 can maintain the higher pressure in the annulus 468 relative to the chamber 444. Maintaining the higher pressure in the annulus 468 can maintain the force exerted on the piston 448 to maintain the movement of the piston 448 or to maintain the piston 448 in the position depicted in
As described above with regard to
The flapper 452 can also be re-opened. As described above regarding
In some aspects, additional pressure can be provided at a position 474 proximate to the flapper 452. For example, additional pressure may be provided at the position 474 proximate to the flapper 452 by increasing the section pressure within the tubing 112. The additional pressure provided at the position 474 proximate to the flapper 452 can exert an opening force on the flapper 452 exceeding the closing force(s) exerted on the flapper 452 (such as by the torsion spring 471, by the fluid provided at the position 472 adjacent to the flapper 452, by other biasing members, or any combination thereof). The greater magnitude of the opening force relative to closing force(s) can cause the flapper 452 to move toward the open position.
Pressure in the chamber 444 can be varied relative to other parts in the tool 116″ to cause the flapper 452 to open, to store a volume of fluid in the swell chamber 402, to utilize the volume of fluid stored in the swell chamber 402, or to close the flapper 452.
In some aspects, the pipe swell tool 116″ can include a biasing member 476. As a non-limiting example, a biasing member 476 may be a spring. The biasing member 476 can bias the flapper 452 toward the open or closed position. For example, as depicted in
Inclusion of the biasing member 476 can supplement the level of force provided by the volume of fluid stored in the swell chamber 402. Supplementing the level of force provided by the volume of fluid stored in the swell chamber 402 can reduce the level of force to be supplied by the swell chamber 402 to cause the flow tube 450 to move. Reducing the level of force to be supplied by the swell chamber 402 to cause the flow tube 450 to move can allow a smaller swell chamber 402 to be utilized. In additional or alternative aspects, increasing the size of the swell chamber 402 utilized may increase the amount of force provided by the volume of fluid stored in the swell chamber 402. Increasing the amount of force provided by the volume of fluid stored in the swell chamber 402 can reduce the strength, size, or both of the biasing spring to be used.
In additional or alternative aspects, liquids with a higher compressibility can be used to store a higher amount of energy within the swell chamber 402. Storing a higher amount of energy can allow for a smaller swell chamber 402 to be used. Storing a higher amount of energy can also provide a greater amount of force from a swell chamber of a set size. For example, storing a higher amount of energy may provide a higher closing force or a higher moving force for a longer tool stroke.
The foregoing description of the aspects, including illustrated examples, of the disclosure has been presented only for the purpose of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Numerous modifications, adaptations, and uses thereof will be apparent to those skilled in the art without departing from the scope of this disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/069402 | 11/11/2013 | WO | 00 |