This patent disclosure relates generally to pipelayers and, more particularly to a counterweight arrangement and power control strategy for a pipelayer.
Pipelayers are work machines used in pipelaying operations, in which the pipelayer raises, lowers, and carries heavy pipes. A counterbalance assembly is provided along an opposite side of the pipelayer to counterbalance the forces of a load being lifted via an opposing boom positioned along an opposite side of the pipelayer. The counterbalance assembly typically includes a counterweight that comprises a number of steel plates. The counterbalance assembly further includes a support structure that allows the counterweight to be is articulated to be moved relative to the machine frame in order to counteract a moment applied by the load lifted by the boom.
Pipelaying can be a lengthy process that can be dependent upon other operations occurring prior to or following a pipelayer positioning a length of pipe. During operation, pipelayers may spend as much as 75% of operational time idling for the comfort of the operator.
In U.S. Pat. No. 8,857,635, a large crane is provided with primary and secondary energy sources, the secondary energy source including an energy storage unit that may be utilized to power a crane cabin air-conditioning compressor. The secondary energy source may include a battery box that may be centrally disposed on the crane or as a base ballast or superlift counterweight on a separate counterweight carriage.
The disclosure describes, in one aspect, a pipelayer including a frame, a plurality of ground engaging members movably supporting the frame, a prime mover, and a boom assembly and a counterbalance assembly supported on the frame. The boom assembly includes a boom. The counterbalance assembly including a counterweight, the counterweight being movably supported on the frame to counterbalance the boom assembly. The counterweight includes a battery box including at least one battery.
According to another aspect of the disclosure, there is provided a pipelayer including a frame, a plurality of ground engaging members movably supporting the frame, and a boom assembly and a counterbalance assembly supported on the frame. The boom assembly includes a boom. The counterbalance assembly includes a counterweight, the counterweight being movably supported on the frame to counterbalance the boom assembly. The pipelayer further includes a cab conditioning system, a first power source including an engine, a second power source including at least one battery, and a control system including at least one controller. The control system is configured to store a reference profile for the pipelayer, the reference profile including a lower battery power threshold. The at least one controller is configured to access the reference profile, determine a power level of the at least one battery, and compare the power level of the at least one battery to the lower battery power threshold. If the power level of the at least one battery is not less than the lower battery power threshold, the at least one controller is configured to operate at least the cab conditioning system from the second power source, and, if the power level of the at least one battery is less than the lower battery power threshold, the at least one controller is further configured to start the engine to recharge the at least one battery while operating at least the cab conditioning system.
In yet another aspect of the disclosure, there is provided a method of providing power to a cab conditioning system in a hybrid pipelayer including a frame supporting a cab, a boom assembly and a counterbalance assembly; the counterbalance assembly includes a movably supported counterweight to counterbalance the boom assembly; a plurality of ground engaging members movably support the frame; the pipelayer includes an ignition switch, the cab conditioning system, a first power source including an engine, and a second power source including at least one battery. The method includes determining a power level of the at least one battery, and comparing the power level of the at least one battery to a lower battery power threshold. The method further includes, if the power level of the at least one battery is not less than the lower battery power threshold, operating at least the cab conditioning system from the second power source, and, if the power level of the at least one battery is less than the lower battery power threshold, starting the engine to recharge the at least one battery while operating at least the cab conditioning system from the at least one battery.
This disclosure relates to a powertrain for a pipelayer 10, a hybrid control system, and cab conditioning control system for such a pipelayer 10. An exemplary pipelayer 10 is illustrated in
The pipelayer 10 further includes a cab 30, which may include one or more machine controls 32 and cab controls 34, which may control, for example, a machine ignition switch 35, electronic components 36 and cab conditioning systems 38, such as heating and air conditioning.
The pipelayer 10 further includes a boom assembly 40 mounted to the frame 12. Boom assembly 40 includes a boom 42 such as a lattice type boom. Boom assembly 40 may further include a pulley block 44 attached to a distal end 46 of boom 42, and a hook winch 48. A cable 50 may be attached to hook winch 48 and wound over pulley block 44. A hoist hook 52 may be suspended from cable 50. As such, a hoisted load (e.g. a pipe) hung by hoist hook 52 may be raised and lowered by winding and unwinding cable 50 around hook winch 48. Boom assembly 40 may also include a boom winch 54. A cable 56 may connect boom winch 54 to distal end 46 of boom 42, allowing the boom winch 54 to raise and lower boom 42 by winding and unwinding cable 56 around the boom winch 54. The hook winch 48 and the boom winch 54 may be any suitable type of rotary actuators known in the art, such as hydraulic or electric motors.
Pipelayer 10 may also include a counterbalance assembly 58 removably attached to frame 12. Counterbalance assembly 58 may include a counterweight 60 that is movably coupled to the frame 12 by a linkage assembly 62. The linkage assembly 62 may be of any appropriate design; for example, the linkage assembly 62 may be a four-bar linkage or a five-bar linkage. The linkage assembly 62 may be actuated by any appropriate arrangement to move the counterweight 60 from a retracted position, as illustrated in
In accordance with aspects of this disclosure, the prime mover may further include a second power source 70 that includes at least one battery 72 as a source of electrical energy. Those of skill in the art will appreciate that the second power source 70 may include a plurality of batteries 72, however. In at least one embodiment, the battery 72 is disposed in a battery box 74 and positioned as the counterweight 60 of the counterbalance assembly 58, that is, at least a part of the counterweight 60. In at least one embodiment, the at least one battery 72 is sealed and able to rotate during operation of the pipelayer 10 and movement of the counterbalance assembly 58 without leaking contents of the battery 72. In at least one embodiment, the battery box 74 is a protective, waterproof structure that is resistant to the elements of an environment in which pipelayers typically operate. In at least one embodiment, the battery box 74 is metallic.
The at least one battery 72 is electronically coupled to the pipelayer 10 by battery cables disposed within one or more protective conduits 76. Those of skill in the art will appreciate that the conduit 76 may be disconnected from the battery 72 and/or the pipelayer 10 in order to facilitate replacement of the conduit 76 and/or the battery 72. The battery box 74 may additionally include a switch 78 that may be accessible to an operator or maintenance personnel from the ground.
The first and second power sources 24, 70 may utilized as a hybrid power system 80. An exemplary such hybrid power system 80 is schematically illustrated in
The at least one battery 72 may then be utilized to provide full machine functionality or to power select operations of the pipelayer 10. For example, the at least one battery 72 may be utilized to power operations of the pipelayer 10 such as cab conditioning systems 38, and operation of one or both of the hook winch 48 and the boom winch 54. The at least one battery 72 may further be utilized to operate an electrical drive system 92 which may include one or more electric motors 94, 96 drivingly coupled to the ground engaging members 14, 16. The electric motors 94, 96 may be operatively connected to the drive sprockets 22, which drive tracks sections 18, 20. In an alternate embodiment including wheels (not illustrated), electric motors may be utilized to drive the wheels. It will further be appreciated that one or more additional electric motors may be provided in order to operate other components of the pipelayer 10, such as operation of the winches 48, 54. A plurality of electric cables 100, 102, 104 are provided to operatively connect the at least one battery 72 to the various machine operations.
The pipelayer 10 may include and aspects of the pipelayer 10 may be controlled by a machine control system 106 as shown generally by an arrow in
The controller 108 may be an electronic controller that operates in a logical fashion to perform operations, execute control algorithms, store and retrieve data and other desired operations. The controller 108 may include or access memory, secondary storage devices, processors, and any other components for running an application. The memory and secondary storage devices may be in the form of read-only memory (ROM) or random access memory (RAM) or integrated circuitry that is accessible by the controller 108. Various other circuits may be associated with the controller 108 such as power supply circuitry, signal conditioning circuitry, driver circuitry, and other types of circuitry.
The controller 108 may be a single controller or may include more than one controller disposed to control various functions and/or features of the control system 106. The term “controller” is meant to be used in its broadest sense to include one or more controllers and/or microprocessors that may be associated with the pipelayer 10 and that may cooperate in controlling various functions and operations and of the pipelayer 10. The functionality of the controller 108 may be implemented in hardware and/or software without regard to the functionality.
The pipelayer 10 may be equipped with a plurality of machine sensors that provide data indicative (directly or indirectly) of operating characteristics of the pipelayer 10. More specifically, the pipelayer 10 may include at least one battery charge sensor 110 which is indicative of a current state of charge of the at least one battery 72. The term “sensor” is meant to be used in its broadest sense to include one or more sensors and related components that may be associated with the pipelayer 10 and that may cooperate to sense or identify the state of charge of the at least one battery 72.
Exemplary systems and methods according to the present disclosure are graphically illustrated in the exemplary flowcharts of
When the at least one controller 108 determines that the power level of the at least one battery 72 has fallen below the lower battery power threshold at Stage 504, the runs the engine 26 to recharge the at least one battery 72, while providing full machine functionality (Stage 506). At Stage 507, the controller determines the power level of the at least one battery 72 based upon the battery charge sensor 110. At Stage 508, the at least one controller 108 determines whether the power level of the at least one battery 72 is less than the charged battery power threshold.
If the power level of the at least one battery 72 is less than the charged battery power threshold at Stage 508, the engine continues to run, returning the system to Stage 506. Stages 507 and 508 then repeat until such time as the power level of the at least one battery 72 is not less than the charged battery power threshold.
If the power level is not less than the charged battery power threshold at Stage 508, the machine functions of the pipelayer 10 are operated from the second power source 70, returning to Stage 505. The cycle of determining the power level of the at least one battery 72 at Stage 503, and the comparison to the lower battery threshold (Stage 504) repeats until such time as the power level of the at least one battery 72 again falls below the lower battery power threshold, at which time the controller 108 again runs the engine 26 (Stage 506).
This strategy may alternatively or additionally be applied as a method of powering a cab conditioning system 38 when a pipelayer 10 is idling for the comfort of an operator in the cab 30. Referring to
When the at least one controller 108 determines that the power level of the at least one battery 72 has fallen below the lower battery power threshold at Stage 604, the controller 108 runs the engine 26 to recharge the at least one battery 72, while operating the cab conditioning systems 38 (Stage 606). At Stage 607, the controller 108 determines the power level of the at least one battery 72 based upon the battery charge sensor 110. At Stage 608, the at least one controller 108 determines whether the power level of the at least one battery 72 is less than the charged battery power threshold.
If the power level of the at least one battery 72 is less than the charged battery power threshold, (Stage 608), the engine 26 continues to run, returning the system to Stage 606. Stages 607 and 608 then repeat until such time as the power level of the at least one battery 72 is not less than the charged battery power threshold.
If the power level of the at least one battery 72 is not less than the charged battery power threshold at Stage 608, the cab conditioning systems 38 of the pipelayer 10 are operated from the second power source 70, returning to Stage 605. The cycle of determining the power level of the at least one battery 72 at Stage 603, and the comparison to the lower battery threshold (Stage 604) repeats until such time as the power level of the at least one battery 72 again falls below the lower battery power threshold, at which time the controller 108 again runs the engine 26 (Stage 606).
Accordingly, some embodiments of the disclosure may be useful in the operation of a pipelayer 10 at a worksite, particularly when the pipelayer 10 is idling. Some embodiments may reduce fuel consumption.
While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed pipelayers, systems and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.
While the foregoing description provides examples of the disclosed system and technique, it is contemplated that other implementations of the disclosure may differ in detail from the foregoing examples. All references to the disclosure or examples thereof are intended to reference the particular example being discussed at that point and are not intended to imply any limitation as to the scope of the disclosure more generally. All language of distinction and disparagement with respect to certain features is intended to indicate a lack of preference for those features, but not to exclude such from the scope of the disclosure entirely unless otherwise indicated.