The invention relates to an apparatus and a method of controlling the movement of an object within a tubular object, such as a cylinder, a tube or a pipeline; a fluid flow processing plant, and a method of cleaning the internal wall of a tubular object, as set out in the introduction to the independent claims.
Pipes and pipelines in general normally require cleaning, testing or gauging, and for this purpose it is well known to use a so-called “pig.” The pig is designed to fit closely within the pipe and is caused to travel along the pipe by admitting fluid under pressure behind the pig. Pigs are also used in operation of a pipeline to separate different fluids (liquids and gases) delivered in succession. The pigs are of various designs, the more common type being of spool shape with annular sealing members around the two flanges of the spool. Other pigs are of generally cylindrical shape, formed of resilient material such as foamed plastics, and it is also common practice to use spherical pigs, either of a solid resilient material, or inflated or inflatable.
Pipelines that are used to transport products such as petroleum, gas or other fluids can become blocked or inefficient through the build up of deposits on the pipe walls. The deposits can be foreign material, detritus, or natural waste products such as, for example, paraffin, calcium, wax and hydrates. It is well know to insert a pig into the pipe in order to clean it. The pig is transported by the fluid pressure along the pipe and has an outer periphery that is of a size that is similar to the diameter of the inside surface of the pipe. Thus, as the pig travels along the pipe—along with fluid flow in the pipe—it serves to remove deposits from the inner surface by scraping or brushing, or simply by pushing the deposits ahead of it as it travels to a point where it can be removed along with the released deposits. Such mono-directional pigs, which are transported along with the fluid flow, may become stuck when it encounters large amounts of pipe wall deposits, and thus form a permanent plug in the pipeline.
In the oil and gas industry, the necessity of pigging operations is especially significant. Severe problems often occur when hydrocarbon fluids are transported in long subsea pipelines at large depths and in cold waters. Such problems may include the formation of obstructions in the pipeline, in the form of hydrates or other deposits such as ice, wax and debris (e.g. asphaltenes, sand). The initially warm well fluid is cooled down by cold seawater, thereby inducing condensation, precipitation and hydrate and wax formation/crystallization. A number of methods of removing such wax and hydrate formation, or preventing the formation of such, exist:
A simple and reliable system for ensuring subsea transport of hydrocarbons over long distances is to allow so-called “cold flow”. If the well stream fluids, pipeline wall and the ambient seawater all are at the same temperature, wax deposits do not form on the interior pipe wall surface, but are transported together with the well fluid without problems. Cold flow is normally achieved by allowing the well stream to be cooled to ambient seawater temperature simply by heat exchange through the pipeline wall. However, severe hydrate and wax formation will take place in the pipeline section where cooling takes place. This relatively short cooling section will therefore have to be pigged more frequently.
The state of the art includes WO 2006/068929 A1 which describes a system for assuring subsea hydrocarbon production flow in pipelines. A hydrocarbon production flow is chilled in a heat exchanger, whereby solids form, and a pig is used for periodically removing deposits and placing them in a slurry. A closed loop pig launching and receiving system is disclosed. A production flow from wells is transported from a manifold to a cold flow module through flow line. The cold flow module is connected to a chilling loop/heat exchanger, which returns to cold flow module. Pig launcher and handling systems are connected to the heat exchanger. The pig is driven by the fluid flow and may alternatively be launched through the heat exchanger and recovered at a terminus, whether that is on an offshore platform or onshore.
The state of the art also includes WO 02/42601, describing an alternative pig propulsion method.
The present applicant has devised and embodied this invention to overcome shortcomings of the prior art and to obtain further advantages.
The invention is set forth and characterized in the main claims, while the dependent claims describe other characteristics of the invention.
It is thus provided a pig apparatus, comprising a pig arranged for movement inside at least a portion of a pipe, characterized in that the pig comprises a tubular body having a longitudinal axis coinciding with the central axis of the pipe portion and at least one through-going opening between the opposite ends of the tubular body, allowing fluids in the pipe to flow through the body, the apparatus further comprising propulsion means arranged and configured for imparting a motive force to the pig, whereby the pig is movable inside the pipe portion independently of the fluid flow of in the pipe.
In one embodiment, the pig comprises a magnetic material, the pipe portion comprises a material of high magnetic permeability, and the propulsion means are arranged outside the pipe portion or in the wall of the pipe portion and comprises means for controllably generating a magnetic field which influences the pig.
In one embodiment, the pig comprises a non-magnetic body having one or more magnets comprising a permanent magnet or a magnetizable material arranged in a circumferential wall of said body. The pig comprises in this embodiment one or more wall cleaning means arranged around the outside circumference of the body, and the magnet comprises a rod having a succession of teeth and slots, arranged such that the teeth are facing radially outwards.
In one embodiment, the propulsion means comprises electromagnetic coils, arranged along the outside of said pipe portion, and a power-and-control apparatus arranged for selectively energising the coils and thereby varying the magnetic field along at least a part of the pipe portion.
In one embodiment, the propulsion means comprises a vehicle having at least one magnet and being arranged and configured for movement along at least a part of the pipe portion, whereby when the vehicle is moved along the pipe portion, the pig is moved along with the vehicle due to the magnetic force generated between the magnet and the magnetic material in the body. The vehicle advantageously comprises wheels and a motor for moving the vehicle along the pipe portion, and the at least one magnet is a permanent magnet or an electromagnet. In one embodiment, the vehicle comprises one or more cleaning elements arranged and configured for cleaning a portion of the pipe outer surface as the vehicle is moving along the pipe.
In one embodiment, the pig further comprises a flow assurance device having wall-cleaning means arranged around at least a portion of the pig body.
It is also provided a fluid flow processing plant, comprising a feed pipeline fluidly connected to a fluid reservoir and arranged for feeding fluid into the plant, and an export pipeline for conveying the fluid away from the plant, characterized by at least one intermediate pipe fluidly connecting the feed pipeline with the export pipeline and comprising a pipeline pig apparatus according to the invention.
In one embodiment, the plant further comprises a plurality of intermediate pipes arranged substantially parallel with each other and connected to the feed pipeline and the export pipeline via an inlet manifold and an outlet manifold, respectively, each one of the plurality of intermediate pipes comprising a pig and propulsion means. The plant advantageously comprises vehicle units comprising adjacent vehicles for individual pipes, coupled together, as well as charging means for the vehicle or vehicle units.
In one embodiment, the plant is supported on the seabed below a body of water and the reservoir is one or more subterranean reservoir producing a flow of hydrocarbons having a temperature which is higher than the ambient seawater temperature, and where a plurality of intermediate pipes is configured and arranged on the seabed so as to cool the flow of hydrocarbons to a temperature at the same level as that of the ambient seawater, thus defining a cooling section for the flow.
In one embodiment, the plant comprises a return line fluidly connected between the export pipeline and the feed pipeline adjacent to the inlet of the intermediate pipe of pipes, and pumping means and valve means arranged in the return line, whereby a portion of the flow in the export pipeline may be fed into the flow upstream of the cooling section.
It is also provided a method of cleaning the internal wall of a pipeline by means of a device according to the invention inside the pipe, arranged for coaxial movement with the pipe and having cleaning means for interaction with at least a portion of the pipe wall, characterized by imparting a motive force on the device from a distal location. In one embodiment, the motive force is a magnetic force generated by a controlled manipulation of an electromagnetic field in the vicinity of the device, e.g. outside the pipe or in the pipe wall. In another embodiment, the motive force is a magnetic force generated in a vehicle which is moved along the pipe.
It is also provided a method of moving a device in a pipe, said device comprising a tubular body having a longitudinal axis coinciding with the central axis of the pipe and configured for coaxial movement with the pipe, characterized by imparting a motive force on the device from a distal location. In one embodiment, when the device comprises a magnetic material and the pipe comprises a material of high magnetic permeability, the motive force is a magnetic force generated by a controlled manipulation of an electromagnetic field in the vicinity of the device. In one embodiment, the motive force is a magnetic force generated in a vehicle which is moved along the pipe.
With the invention, wax and hydrate deposits, etc., in subsea hydrocarbon production flowlines may be removed in an efficient manner. The invented plant uses the rapid cooling of the flow in the cooling section, removing deposits, etc. to assure long distance export of hydrocarbons below Wax Appearance Temperature (WAT).
The invention is applicable to any hydrocarbon flow, such as multiphase, oil, gas and condensate where deposits, wax and hydrate might be a problem, and to other types of flow or production in pipes where deposits, debris or material sticking on the interior pipe walls may occur. Examples of such other fluid flows are water, coolants, fuels, or sewage.
In the cooling section, cooling may be improved by actively forcing water (or air, if on land) over the cooling pipes, by e.g. propellers, fans, etc. Circulation around the cooling pipes is enhanced by natural convection, and the cooling pipes may be arranged in an inclined configuration in order to further utilize this effect. Natural ocean currents may also be useful in the cooling process, e.g. by arranging the pipes transversely with respect to the currents. The pipes in the cooling section may also comprise a pipe-in-pipe arrangement, where the well fluids flow in an inner pipe, and cooling fluids flow in the annulus between the inner pipe and the outer pipe, preferably in the opposite direction of the well fluids. The length of the cooling section will depend on production volume and flow rates, as well as the contents and temperature of the fluid. The greater the number of parallel intermediate pipes, the shorter the length of the cooling section. The flow in the pipes is mixed (turbulent) and homogenous such that the hydrocarbons do not separate in the plant and in order to improve cooling.
The magnetic trolley is retrievable and can easily be replaced if malfunction occurs. One trolley can control one or more pigs. The trolley or trolley unit may contain electronics, batteries (optional battery driven), electro motors, permanent magnets or electro magnets for interlocking trolley and pig. The electro magnets in the trolley can be used to inductively warm the pig body inside the pipe. This can be advantageous to clean the pig or to melt hydrate or wax plugs form the pipe inside walls. Power is provided via umbilical/tether from an adjacent unit, via cables on the sea floor or on reels, or via electricity passed through the pipes or rails on the pipes. The trolley or trolley unit may be rechargeable via docking and recharging stations at one or both ends of the cooling section.
The invented pig is basically a passive device, containing few moving parts and being of a simple design. The pig does not have any on-board propulsion mechanism, but is driven by external means, such as magnetic fields. The pig is propelled in the pipe by magnetic inter-locking with a moving trolley outside the pipe, or by a magnetic field (generated by electromagnetic spools) which varies along the length of the pipe.
It is possible to communicate with the pig through the pipe wall, and the pig may advantageously be furnished with sensors, RFID tags and the like.
The invented pig is a bi-directional pig. It can be moved in both directions in the pipe, relatively independent of flow direction, i.e. also against the flow direction. The invented hollow pig is fail-safe, in that its through-going bore allows flow of well fluids in the pipeline even in the event that the pig is impeded and unable to move in the pipeline.
Spinning, vibrating, shaking or hammering motion is possible with right magnetic field created in trolley. The angle, direction, strength and frequency of the magnetic field will affect the pig in different ways. It is also possible to adapt and configure the pig set-up and construction to different movement patterns.
The invention provides an efficient tool for removing ice from a pipe, both on the inside wall (by the pig) and on the outside wall (by the cleaning elements on the trolley).
While a pig according to the prior art will not move if the pipe is completely clogged, the invented hollow pig, being independent of the fluid flow, may be moved to the plug (e.g. deposits) which is clogging the pipe, and start working (hammering, heating, melting) on the plug in order to remove it and restore fluid flow in the pipeline.
These and other characteristics of the invention will be clear from the following description of preferential forms of embodiment, given as non-restrictive examples, with reference to the attached schematic drawings wherein:
a and 3b are longitudinal and cross section views, respectively, of another embodiment of the bidirectional pig;
a and 4b are longitudinal and cross section views, respectively, of yet another embodiment of the bidirectional pig;
a and 6b are a cross section and perspective views, respectively, of the pipe, showing an alternative arrangement of the electromagnetic coils;
a is a perspective view of yet another embodiment of the invented bidirectional pig;
b is a perspective view of a magnetic element used in the pig illustrated in
c is an end view of the pig illustrated in
a is a perspective view of yet another embodiment of the invented bidirectional pig;
b is a perspective view of the magnetic elements used in the pig illustrated in
The subsea plant may in general comprise or be connected to satellite wells, well manifolds and templates, etc., as the skilled person will appreciate.
A plurality of pipes 5 are arranged substantially parallel and with a distance between each other, and each pipe 5 is in one respective end connected to the PLEM via an inflow manifold 3a and the pipe section 5a, and in the other end connected to the export pipeline 5b via an outflow manifold 3b. The pipes 5 and the inflow and outflow manifold define a cooling section 3 for the subsea plant, and the length of each pipe in the cooling section is designed such that the well fluids will have reached a temperature which is at or near the temperature of the ambient seawater or the pipe wall by the time they reach the outflow manifold 3b. The inflow manifold serves to split the flow from the pipe section 5a into the pipes 5, and the outflow manifold serves as a confluence for the cooled flow, into the export pipeline 5b. The pipes have small diameters (e.g. between 3″ to 8″) compared to the export pipeline, in order to increase surface area for effective cooling.
It should be understood that the pipes of the cooling section may be arranged in a number of ways, in order to best utilize the properties of the cooling medium (e.g. seawater) and the seabed topography. It should also be understood that the pipes of the cooling section need not necessarily be placed on a seabed, but may be arranged at any depth in the water, suspended by e.g. buoys in a manner which is generally known in the art.
By arranging the pipes in such side-by-side relationship, efficient cooling is obtained over a comparably short distance. Pipe supports 9 elevate the cooling section above the ground (seabed, not shown) in order to expose the pipes' entire circumference to seawater and thus achieve efficient cooling.
Turning now to
a, 3b and 4a, 4b illustrate further embodiments of the pig. In
The pig may be moved in the pipe 5 by mechanical means, such as a winch and wire arrangement (not shown) inside the pipe, or by another known method. It is preferred, however, to effect pig movement by controlling magnetic fields, as described in the following.
The pipe 5 is in this embodiment of a material that allows for magnetic fields to pass through the pipe wall, i.e. a material with high magnetic permeability. Preferred pipe materials comprise a non-magnetic material such as titanium, ceramics, plastics, composite (GFRP, CRFP), aluminium, or stainless steel (austenitic). In order to provide efficient cooling of the well stream, the pipe material is advantageously of high thermal conductivity. Metallic cooling pipes must be compatible with or isolated from the rest of the pipe line system for Cathodic Protection (CP) purposes.
The pig body comprises a ferromagnetic material that is responsive to an external magnetic field, or/and a permanent magnetic (PM) material. The magnetic material in the pig is preferably either a magnetizable material or a permanent magnet material.
Referring to
a,b show a similar configuration, having larger magnet rods 33′ which provide a greater contact area.
Thus, the pig may be propelled by a controlled manipulation of the magnetic field affecting it. By controlling the magnetic field, the pig may be driven in either direction within the pipe, and at speeds that are appropriate for the given practical application. The pig may be supported by wheels, sliding supports, and/or directly by the scraper, as discussed above.
Alternatively, referring to
The electromagnetic coils may be oriented parallel, axially, radially (see
Referring additionally to
The wheels 44 are in the illustrated embodiment driven by an electric motor (schematically indicated as reference number 42), which may be powered by on-board batteries or from an external source via an umbilical 47. The wheels may be rubber wheels, rolling directly on the pipe outer wall. The wheels 44 may also be gear wheels, rolling in a pitch rack 45 in a rack-and-pinion configuration.
In the embodiment illustrated by
The magnet 41 may also be controlled so as to generate a magnetic field which opposes that of the pig body, in which case the trolley will seek to repel the pig and hence push it along inside the pipe.
Returning now to
In
The trolley or trolley units may be controlled either via an umbilical 47a from a surface vessel 1 or via an umbilical 47b from a control unit 8 that is connected to the PLEM.
Referring now to
The return line 30 may optionally be furnished with a pig according to the invention, propelled by any of the methods and devices described above, for example by a trolley 40 (illustrated in dotted lines in
Although the cooling section 3 has been illustrated as a section having parallel, straight pipes 5, the cooling section may in certain applications advantageously be arranged in a circular, spiral, configuration, with the control unit for the magnet trolley in the centre. This configuration will reduce the length of the umbilical between the control unit and the trolley. The invention may also be used in a closed loop cooling section. The plant may also comprise a by-pass line (not shown) between the PLEM and the export pipeline (with associated shunt control valves).
Although the invention has been described with reference to a subsea plant for hydrocarbons, the invention may also be implemented in a land based installation, in which case air may be the cooling medium. Alternatively, in a land-based installation, the cooling medium may be a liquid, such as water.
Although the invention has been described with reference to a cooling section of a subsea plant for hydrocarbons, the invention is also applicable in any pipeline, where a pig, plug or other object is moved in controlled manner by any of the propulsion means described above.
Number | Date | Country | Kind |
---|---|---|---|
20110003 | Jan 2011 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/074313 | 12/30/2011 | WO | 00 | 9/11/2013 |