A pipeline system, in some embodiments has a pipeline connected to a pig selector with the pig selector concurrently housing multiple different pigs in separate pig chambers. A pig loader is positioned proximal the pig selector and is configured to load a pig from a pig chamber of the pig selector into a launch pipe connected to the pipeline.
In accordance with other embodiments, a pipeline system has a controller connected to a pig selector, a pig loader, and at least one sensor with the pig selector housing a plurality of pigs is separate pig chambers. A launch pipe is connected to a pipeline and the pig loader is positioned to deploy a pig into the launch pipe from a pig chamber in accordance with a pigging strategy generated by the controller.
A pipeline system can be operated, in accordance with various embodiments, by detecting an operating condition of a pipeline with at least one sensor connected to a controller and generating a pigging strategy with the controller based on the detected operating condition. A first pig is selected from a pig selector in accordance with the pigging strategy and is subsequently deploy into a launch pipe with a pig loader to allow the first pig to be launched into the pipeline via the launch pipe.
Continued hydrocarbon exploration has increased the demand for reliable and efficient oil and gas transportation. Hydrocarbon carrying pipeline, conduit, and tube, which can collectively be characterized as pipe, has the potential to provide adequate transportation performance as initially constructed. However, hydrocarbons transportation often degrades pipe over time due at least to the nature of the transported chemicals, the environmental conditions of the pipe, and the presence of debris. As a result, pipe maintenance is needed over time to maintain hydrocarbon transportation performance of a pipe as part of a pipeline.
Pipeline operation is critical to the overall hydrocarbon life cycle from exploration to refining. Hence, taking a pipeline offline to inspect and/or perform maintenance can result in delays and loss of productivity of downstream, and upstream, hydrocarbon processing centers. Accordingly, some pipe inspection equipment can be utilized while fluids flow. In yet, the use of such pipe inspection equipment can pose operational inefficiencies that degrade the overall performance of a pipeline.
With these issues in mind, various embodiments are directed to a pipeline system that utilizes intelligent pig selection and deployment means to send at least one pig through a pipe during fluid transportation within the pipe. The ability to select between multiple different pigging configurations allows a user to provide optimal pipe cleaning and inspection capabilities without delaying, or degrading, the flow of fluids, such as hydrocarbons, through the pipe. The generation of a pigging strategy based on at least one sensed pipeline condition allows a pipeline system to employ maximum inspection and cleaning effectiveness while maintaining pipe transportation performance.
Turning to the drawings,
In a non-limiting embodiment, a source 104 is a hydrocarbon exploration site and a destination 106 is a hydrocarbon refining site. Other embodiments may have a source 104 as a pressure generator, such as a pump or compressor, and the destination 106 as a storage unit, such as a tank. It is contemplated that a plurality of separate sources 104 act concurrently, or sequentially, to send fluids to one or more separate destinations 106. Regardless of the number, type, and physical location of the source(s) 104 and destination(s) 106 of a pipeline system 100, the pipe 102 provides a continuous pathway for the fluid to flow. The pipe 102 may be sealed or unsealed with any number of control structure, such as valves and/or gates, that allow the path, pressure, and timing of fluid delivery to at least one destination 106.
However, through use and changing environmental conditions over time, the interior transport area 124 can be altered in manners that degrade the fluid transportation performance of the pipeline 120. For instance and in no way limiting, transported fluids can physically alter the interior wall 128 of the pipe 102, which can create pressure differentials that degrade fluid transportation. Fluid being transported in the pipeline 120 can introduce debris that clog, and reduce, the transport area 124 of the pipeline 120 either temporarily when debris moves or long-term when the debris sticks to the interior pipe wall 128. It is noted that debris may be in the form of residual hydrocarbon chemicals, such as sludge, oils, paraffins, or combinations thereof. The blockage, or other alteration of the transport area 124, can be particularly detrimental to fluid transportation performance for the pipeline 120 in the aggregate along the pipeline length 126, such as over miles.
Accordingly, various embodiments engage in pipeline 120 cleaning operations that remove debris and other contaminants from the interior transport area 124.
The various slug(s) 142 can have physical features 144, such as flanges, cantilevered ridges, and/or brushes, that act on the interior wall of the pipe 102 to clear and/or clean the pipe 102 of debris and contaminants. The use of multiple different slugs 142 allows diverse cleaning capabilities that can efficiently reduce, or eliminate, the presence of contaminations that reduce the fluid transport area of the pipe 102. However, the manual selection, loading, and launching of various slugs 142 into a pipeline can be inefficient, particularly with respect to the fluid volume and pressure conditions within the pipeline. That is, manual time is needed to physically select and position one or more slugs 142 for pipeline insertion and the casual launching of a slug 142 during some fluid transport conditions, such as low pressure and/or volume intervals, can detrimentally impacts fluid transportation performance as well as slug 142 efficiency.
In some embodiments, a slug 142 can be configured with one or more sensors 146 that continuously, or sporadically, detect physical aspects of the pipe 102. For example, sensors 146 can measure pipe wall thickness, pipe joint integrity, and transport area to determine the current fluid transport status of at least a portion of a pipeline. The data from the sensor(s) 146 may additionally indicate what pipeline repairs are needed or what slug(s) 142 are needed to optimize the fluid transportation efficiency of the pipe 102.
Hence, a pipeline system can be configured, in accordance with some embodiments, with optimized slug selection, distribution, and communication capabilities that increase the maintenance, and inspection, of fluid transporting pipelines.
The pigging system 160 can employ one or more electronic controllers 166, such as a microprocessor or other programmable circuitry, to evaluate the pipeline 162 with at least one sensor 168, generate a pigging strategy stored in local memory 170, and carry out the pigging strategy with a pig selector 172 and a pig loader 174. The system sensors 168 may detect pipeline operation, such as fluid flow rate, volume, or pipe transport area, and environmental conditions, such as ambient temperature, humidity, and pressure, inside and/or outside the pipeline 162. The system controller 166 can utilize the detected operation and/or environmental conditions to determine what pigs are needed to increase fluid transport performance in the pipeline, which can be characterized as a pigging strategy.
The pigging strategy can be executed as directed by the controller 166 by manipulating the pig selector 172 to deliver one or more pigs to the pig loader 174 that physically positions each pig for launching into the pipeline 162. For instance, the pig selector 172 can provide two different types of pigs to the pig loader 174 so that each pig can be received by the control valves 164 and subsequently launched into the pipeline 162 by redirecting fluid flow.
As shown in
An example pig selector 190 is illustrated in
The body 192 can be loaded with pigs 198 from one side by one or more pig loaders and retain the loaded pigs 198 until ejected from the opposite side of the body 192 into the launch piping of a pigging system. The concurrent storage of different pig packages 200 within the various pig chambers 194 allows the single body 192 to provide a diverse array of pigging options for a controller to generate, and execute, a pigging strategy. That is, different types of pigs 198 can be concurrently loaded into the pig chambers to form pig packages 200 that can be selected at will by a local controller to execute a pigging strategy.
By supporting the body 192 via the central axis 196, the body 192 can rotate to position a pig chamber 194 in alignment with launch piping 202 of a pigging system, such as piping 176. Alignment of a pig chamber 194 with launch piping can correspond with articulation of a loader, such as a mechanical arm, introduction of pressure, or other evacuation of the pig package 200 from the pig chamber 194. It is contemplated that the pig selector 190 and pig loader can be automated to provide relatively quick loading of one or more pig packages 200 into launch piping. Such pig package 200 delivery speed can contrast manual loading of individual pigs 198 into launch piping and provide optimized execution of pigging strategy that takes advantage of varying pipeline fluid transportation conditions.
While a pig selector body 192 can be loaded with one or more pig packages 200 at any time, some embodiments pre-load a body 192 with several different kinds of pigs 198, such as pigs of different sizes, uses, types, materials, and computing capabilities. The pre-loading of a selector body 192 allows different bodies 192 to be utilized at will.
A local controller 166 can execute a pigging strategy by rotating the body 212 and deploying any number of pig packages 200 via articulation of a pig loader 218. At any time, the controller 166 may eject the mounted selector body 212 and load a different second body 220, which may be pre-loaded with pig packages that match, or differ, from the initial configuration of the first selector body 212. It is contemplated that the automated ejection and loading of different selector bodies 212/220 provides long-term pigging operation with minimal human interaction, which can be particularly beneficial in remote physical locations where hydrocarbon pipelines are prevalent. For instance, multiple different selector bodies 212/220 allows an empty body 212 to be replaced automatically without human interaction to seamlessly service one or more different pigging strategies developed by the local controller 166 over time.
It is contemplated that the non-mounted selector bodies 220 can be physically transported to the stand 214 via any mechanical, and/or pneumatic, transport system, such as a ramp, track, pick-and-place, crane, or conveyor. Body 212/220 loading, and ejecting, can be accomplished via gravity, in some embodiments, and/or by mechanical means that selectively move a body 212/220 into, and out of, attachment to a rotating mechanism of the stand 216. In alternative embodiments, a selector body can be a rack holding multiple different pig packages 200 that are mechanically transferred to the launch piping 216 via the pig loader 218 without rotating of the selector body.
The collected operational data from a pipeline allows the local pigging system controller to generate one or more pigging strategies in step 236 that are directed to establishing, and/or maintaining, optimal pipeline fluid transport performance, such as volume flow, pressure flow, internal pipe turbulence, heat, and transport time. For example, a pigging strategy can be generated to correct a detected issue, such as pressure variations. As another example, a pigging strategy may call for proactive actions that clean, or inspect, portions of a pipeline.
The ability to efficiently select, deploy, and launch one or more pig packages with a pig selector and loader allows the generated pigging strategies to take advantage of relatively short operational intervals, such as high pressure events, high volume events, or hazardous hydrocarbon material transport, to reactively, and/or proactively alter the operating conditions with the constituent pig(s) of the pig packages. That is, different pigs with different shapes, sizes, materials, and weights can be quickly deployed by a rotating pig selector to carry out relatively complex pigging strategies in time to aid, reduce, or prevent future operational conditions, which would be nearly impossible with human selection, loading, and deployment of individual pigs.
A pigging strategy may additionally set pig package launch criteria, such as launch pressure and time to divert pipeline flow via control valves. The combination of pipeline operational conditions and launch conditions in a pigging strategy allows for sophisticated pipeline maintenance that ensures high fluid transport performance over time. The generation of at least one pigging strategy can prompt decision 238 to evaluate if strategy execution is appropriate. If no pigs are available for deployment, decision 238 can execute step 240 that ejects an empty, or insufficient, selector body and subsequently loads an alternate selector body to a stand that allows one or more pigs to be loaded into an adjacent launch piping.
At the conclusion of step 240, or if pipeline operating conditions called for by an active pigging strategy have not been met, decision 238 is revisited. At some point when operating conditions and available pig packages are available in accordance with a pigging strategy, step 242 loads the corresponding pig package(s) into a launch piping to allow step 244 to deploy the loaded package(s) into the pipeline with the launch characteristics (pressure, volume, time) prescribed by the pigging strategy.
It is contemplated that multiple different pigging strategies may be concurrently be evaluated by decision 238. In such a case, decision 238 may overcome conflicts between steps 240 and 242 by prompting the pigging controller to revise a previously generated strategy. For instance, replacement of an empty selector body may be prioritized in decision 238 by a local controller while an existing pigging strategy is amended to account for current pipeline operating conditions. While pig launching conditions may be missed with such strategy revision, accounting for current pipeline operating conditions allows for active pigging strategies to be relevant despite changes in environmental and/or operational conditions.
With the deployment of at least one pig in step 242 in accordance with a pigging strategy, some operational characteristics of a pipeline is at least temporarily altered, such as amount of pipe wall contaminants, operating pressure, operating volume. Step 246 can be conducted at any time after the deployment of a pig in step 242 to verify the completion, and effectiveness, of the execution of the pigging strategy. Such verification can trigger step 236 to be revisited and an active pigging strategy to be amended. Such verification can alternatively be logged by the local system controller to improve future pigging strategies, such as what types of pigs are effective during various hydrocarbon transport conditions. As a result of step 246, future pigging strategies can more effectively optimize pipeline operation.