The present disclosure is related to the field of servicing boreholes with electric wireline tools and Logging While Drilling (LWD) tools. More specifically, the present disclosure is related to the use of acoustic pulse-echo imaging tools, and processing data acquired with acoustic imaging tools to estimate parameters of the borehole and/or the earth formation.
Acoustic pulse-echo imaging tools are known in the art. The acoustic pulse-echo imaging tool usually comprises a rotating head on which is mounted a piezoelectric element transducer. The transducer periodically emits an acoustic energy pulse on command from a controller circuit in the tool. After emission of the acoustic energy pulse, the transducer can be connected to a receiving circuit, generally located in the tool, for measuring a returning echo of the previously emitted acoustic pulse which is reflected off the borehole wall. By processing the reflected signal, it is possible to infer something about the acoustic impedance characterizing the near-borehole environment. Specifically, changes in acoustic impedance are diagnostic of the geometry of the borehole.
Typically, as single acoustic pulse results in a plurality of reflections that may be received as a signal to be processed to estimate the arrival times and amplitudes with widely varying amplitudes and a highly reverberatory nature. The use of a single acoustic pulse and then waiting for a plurality of reflections requires considerable time and energy for evaluating the near-borehole environment. The present disclosure is directed towards apparatuses and methods for estimating parameters of the near-borehole environment using the arrival times and amplitudes of a plurality of reflections produced by a plurality of pulses, thus reducing the time and energy requirements.
In aspects, the present disclosure generally relates to servicing boreholes with electric wireline tools and Logging While Drilling (LWD) tools. More specifically, the present disclosure is related to the use of acoustic pulse-echo imaging tools, and processing data acquired with acoustic imaging tools to estimate parameters of the borehole and/or the earth formation.
One embodiment according to the present disclosure may include an apparatus configured to estimate a geometry of a borehole penetrating an earth formation, the apparatus comprising: a rotatable transducer assembly; an array of transducers on the rotatable transducer assembly, at least one element of the array configured to: generate a plurality of acoustic pulses in the borehole, and receive an acoustic signal comprising a plurality of overlapping events resulting from the generation of the plurality of acoustic pulses; and at least one processor configured to: estimate an envelope of the received acoustic signal at the at least one element of the array of transducers; and estimate at least one arrival time of at least one of the plurality of overlapping events from the envelope of the received acoustic signals, the at least one arrival time being characteristic of the geometry of the borehole.
Another embodiment according to the present disclosure may include a method for estimating a geometry of a borehole penetrating an earth formation, comprising: estimating, using at least one processor, an envelope of an acoustic signal received by at least one element of an array of transducers, the acoustic signal comprising a plurality of overlapping events resulting from a plurality of acoustic pulses; and estimating the geometry of the borehole using at least one arrival time of at least one of the plurality of overlapping events from the envelope of the received acoustic signal.
Another embodiment according to the present disclosure may include a non-transitory computer-readable medium product having stored thereon instructions that, when executed by at least one processor, perform a method, the method comprising: estimating an envelope of an acoustic signal received by at least one element of an array of transducers, the acoustic signal comprising a plurality of overlapping events; and estimating a geometry of a borehole using at least one arrival time of at least one of the plurality of overlapping events from the envelope of the received acoustic signal.
Examples of the more important features of the disclosure have been summarized rather broadly in order that the detailed description thereof that follows may be better understood and in order that the contributions they represent to the art may be appreciated.
For a detailed understanding of the present disclosure, reference should be made to the following detailed description of the embodiments, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals, wherein:
a)-(c) show three examples of a reflected signal that includes an echo signal at different times after a primary echo;
a)-(b) show time-domain and frequency-domain representations of a Cauchy bandpass filter;
a)-(b) show the wavelet of
a)-(b) show the results of applying the envelope detection method to the signal of
a)-(b) show an echo detector and the application of it to the data in
The present disclosure generally relates to servicing boreholes with electric wireline tools and Logging While Drilling (LWD) tools. In one aspect, the present disclosure relates to estimating borehole parameters, such as, but not limited to, (i) size, (ii) shape, (iii) acoustic reflection strength, (iv) acoustic contrast of borehole fluid versus the earth formation, and (v) geometry. In another aspect, the present disclosure relates to generating images of the borehole wall, including, but not limited to, at least one of: (i) a stacked image and (ii) a borehole wall image over an aperture defined by a plurality of acoustic pulses. In another aspect, the present disclosure relates to an apparatus for estimating at least one property of a borehole wall and/or an earth formation using overlapping acoustic events, wherein the events may include acoustic pulses and acoustic reflections. In some embodiments, estimates of borehole parameters and/or generated images may use data from multiple echo packets received due to reflections of multiple transmitted pulse packets in a pipelined chain sent from an acoustic transducer. The present disclosure is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. Indeed, as will become apparent, the teachings of the present disclosure can be utilized for a variety of well tools and in all phases of well construction and production. Accordingly, the embodiments discussed below are merely illustrative of the applications of the present disclosure.
During the process of drilling the borehole 2, a casing 4 is set in the borehole 2 and cemented in place with concrete 32. At the bottom of the casing 4 is a casing shoe 11. Drilling the borehole 2 continues after cementing of the casing 4 until a desired depth is reached. At this time, the tool 10 may typically be run in an open-hole 13, which is a portion of the borehole 2 deeper than the casing shoe 11. The tool 10 is usually run in the open-hole 13 for evaluating an earth formation 16 penetrated by the borehole 2. Sometimes evaluation of the earth formation 16 proceeds to a depth shallower than the casing shoe 11, and continues into the part of the borehole 2 in which the casing 4 is cemented.
The tool 10 may include a transducer section 14 from which an acoustic pulse 12 may be emitted. The acoustic pulse 12 may travel through a fluid 18 which fills the borehole 2. The fluid 18 may include, but is not limited to, one or more of: (i) water, (ii) water-based solution of appropriate chemicals, or (iii) drilling mud. When the acoustic pulse 12 strikes the wall of the borehole 2, or the casing 4, at least part of the energy in the acoustic pulse 12 is reflected back toward the tool 10 as a reflection 15. The transducer section 14 is then switched to receive the reflection 15 of the acoustic pulse 12 from the wall of the borehole 2, or from the casing 4. The reflection 15 may contain data that are useful in evaluating one or more of: (i) the earth formation 16, (ii) the borehole 2, and (iii) the casing 4.
a-c) show three exemplary types of reflection signals 401 that may be received.
One point to note about the echo signal is that it looks like a wavelet having an unknown envelope function, a known center frequency, and an approximately known bandwidth. The first problem can then be characterized as that of estimating the envelope of the wavelet, while the second problem can be characterized as that of detecting the time of arrival of the wavelet.
An effective way to estimate the envelope of a wavelet is to use the Hilbert transform. An acoustic signal f(t) such as that in
f(t)=A(t)cos θ(t). (1)
Its quadrature trace f*(t) then is:
f*(t)=A(t)sin θ(t), (2)
and the complex trace F(t) is:
F(t)=f(t)+jf*(t)=A(t)ejθ(t). (3)
If f(t) and f*(t) are known, one can solve for A(t) as
A(t)=└f2(t)+f*2(t)┘1/2=|F(t)| (4)
as the envelope of the signal f(t).
One non-limiting example of a way to determine the quadrature trace f*(t) is by use of the Hilbert transform:
where p.v. represents the principal value. The Hilbert transform needs a band-limited input signal and is sensitive to wide-band noise. Consequently, before applying the Hilbert transform, a band-pass filter is applied. In the present method, a Cauchy filter is used as the band-pass filter.
a-b) show representations of two different Cauchy filters in the time domain (
An advantage of the Cauchy filter that can be seen in
a) shows the wavelet corresponding to signal 405 on an expanded scale.
Commonly, the Hilbert transform is applied in the frequency domain. To reduce the computational burden, in one embodiment of the present disclosure the Cauchy filter is combined with the Hilbert transform and applied to the signal. To speed up the computation, the Cauchy-Hilbert bandpass filter (CHBP filter) is applied in the time domain by convolving the signal separately with the in-phase part of the CHBP filter and the quadrature component of the CHBP filter.
Normalization of the gains of the filters may be necessary. This process is illustrated in
The envelope of the signal in
This filter is very sensitive to high frequency noise, so that a low pass filtering may be applied prior to the Laplace operator. In one embodiment of the disclosure, a Gaussian filter is used, so that the combination of the Gaussian-Laplace operator may be denoted by:
In the example, the wavelet energy packet contains about 5 to 6 cycles (6 cycles with 100 samples for this case). A symmetric filter is needed to preserve phase information. In one embodiment, the filter length is chosen to have 5 cycles with 79 samples. Again a Hanning window function is added on the Gaussian Filter to reduce the Gibbs phenomenon. The result of applying the Gauss-Laplace operator 901 to the data in 803 is shown in
The disclosure above has been for a specific wireline tool used for imaging of borehole walls and for analysis of the quality of cement bond. The principles outlined above may also be used for MWD applications for imaging of borehole walls. Disclosed in
The problem of interfering signals is also encountered in U.S. Pat. No. 7,311,143 to Engels et al., having the same assignee as the present disclosure and the contents of which are incorporated herein by reference. Engels discloses a method of and an apparatus for inducing and measuring shear waves within a wellbore casing to facilitate analysis of wellbore casing, cement and formation bonding. An acoustic transducer 1007 is provided that is magnetically coupled to the wellbore casing and is comprised of a magnet combined with a coil, where the coil is attached to an electrical current. The acoustic transducer 1007 is capable of producing and receiving various waveforms, including compressional waves, shear waves, Rayleigh waves, and Lamb waves as the tool traverses portions of the wellbore casing. The different types of waves travel at different velocities and may thus interfere with each other. In Engels, the received signals may not be echoes, and may simply be different modes propagating at different velocities in the casing in axial and/or circumferential directions. For the purposes of the present disclosure, the term “arrival” is used to include both echoes and signals propagating in the casing.
Based on travel-times and amplitudes of the detected arrivals, using known methods, it is then possible to determine one or more of the following: (i) a thickness of the casing, (ii) the acoustic impedance of the cement in proximity to the casing, (iii) a position and size of a void in the cement, and (iv) a position and size of a defect in the casing.
As would be known to those versed in the art and having benefit of the present disclosure, the amplitude of the events depends upon the acoustic impedance contrast between the fluid in the borehole and the earth formation. Accordingly, an image of the amplitudes of the events provides an indication of the acoustic impedance of the borehole wall. As the borehole fluid properties are relatively invariant over many meters or tens of meters of the depth of the borehole, the image of the amplitudes is also indicative of the velocity of the earth formation.
When measurements are made in an MWD mode, the rotational speed of the transducer is the same as the rotational speed of the drill collar. Accordingly, a principal benefit of the method disclosed above is in improving the signal to noise ratio of the images of the borehole wall. The travel time measurements may be used to estimate the location of the BHA in the borehole and the geometry of the borehole using the method disclosed in U.S. Pat. No. 7,548,817 to Hassan et al., having the same assignee as the present disclosure and the contents of which are incorporated herein by reference. As discussed in Hassan, a piecewise elliptical fit is made to the travel time measurements. This basically involves a transformation of the travel time measurements (which are in a tool-centered polar coordinate system) to a fixed Cartesian coordinate system.
Implicit in the processing of the data is the use of a computer program implemented on a suitable machine readable medium that enables the processor to perform the control and processing. The machine readable medium may include ROMs, EPROMs, EAROMs, Flash Memories and Optical disks. The determined formation properties may be recorded on a suitable medium and used for subsequent processing upon retrieval of the BHA. The determined formation properties may further be telemetered uphole for display and analysis.
While the foregoing disclosure is directed to the one mode embodiments of the disclosure, various modifications will be apparent to those skilled in the art. It is intended that all variations be embraced by the foregoing disclosure.
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/370,359, filed on 3 Aug. 2010.
Number | Name | Date | Kind |
---|---|---|---|
4255798 | Havira | Mar 1981 | A |
4780858 | Clerke | Oct 1988 | A |
4867264 | Siegfried | Sep 1989 | A |
5377160 | Tello et al. | Dec 1994 | A |
5491668 | Priest | Feb 1996 | A |
5638337 | Priest | Jun 1997 | A |
5644550 | Priest | Jul 1997 | A |
7311143 | Engels et al. | Dec 2007 | B2 |
7548817 | Hassan et al. | Jun 2009 | B2 |
7966874 | Hassan et al. | Jun 2011 | B2 |
8015868 | Hassan et al. | Sep 2011 | B2 |
8190369 | Moos et al. | May 2012 | B2 |
20050152219 | Garcia-Osuna et al. | Jul 2005 | A1 |
20050205268 | Engels et al. | Sep 2005 | A1 |
20060254767 | Pabon et al. | Nov 2006 | A1 |
20070005251 | Chemali et al. | Jan 2007 | A1 |
20070280048 | Dubinsky et al. | Dec 2007 | A1 |
20080307875 | Hassan et al. | Dec 2008 | A1 |
20090065252 | Moos et al. | Mar 2009 | A1 |
20090084176 | Hassan et al. | Apr 2009 | A1 |
20090114472 | Winkler et al. | May 2009 | A1 |
20100118648 | Zhao | May 2010 | A1 |
20100118649 | Zhao | May 2010 | A1 |
20100187008 | Wassermann et al. | Jul 2010 | A1 |
20110080803 | Vu et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
1348954 | Oct 2003 | EP |
Number | Date | Country | |
---|---|---|---|
20120033528 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61370359 | Aug 2010 | US |