Eng et al., Neurochemical Research, 21, p511-525, 1996.* |
Wells et al., Methods 10 p 126-134, 1996.* |
Trebst, C. et al., “CCR1/CCR5 Mononuclear Phagocytes Accumulate in the Central Nervous System of Patients with Multiple Sclerosis”, Am. J. Path. (2001)159:1701-1710. |
Rottman, J. B. et al., “Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent”, Eur. J. Immunol. (2000) 30:2372-2377. |
Liang, M. et al., “Identification and Characterization of a Potent, Selective, and Orally Active Antagonist of the CC Chemokine Receptor-1”, J. Biol. Chem. (2000) 275(25):19000-19008. |
Zikolova et al., “Analogs of N1-benzhydryl-N4-cinnamylpiperazine (oinnarizine) II N1-Substituted-N4-benzhydrylpiperazines”, Tr. Nauchnoizsled. Khim.-Farm. Inst. (1972), 8:59-67. |
Ivanova et al., “Synthesis and pharmacological studies of a group of N-acylpiperazines”, Farmatsiya (Sofia) (1976), 26(4):10-14. |
Nikolova et al., “Preliminary pharmacological investigation of some piperazine derivatives”, Farmatsiya (Sofia) (1969), 19(2):31-37. |
Zikolova et al., “Synthesis of piperazine derivatives VI Symmetric and asymmetric N-acylpiperazines with possible biological activity”, Tr. Nauchnoizsled. Khim.-Farm. Inst. (1972), 7:109-115. |
Azize et al., “Thermal behavior and elastic properties of phospholipid bilayers under the effect of a synthetic flavonoid derivative, LEW-10”, Chemistry and Physics of Lipids (1992), 63:169-177. |
Carceller et al., “(Pyridylcyanomethyl) piperazines as Orally Active PAF Antagonists”, J. Med. Chem. (1992), 35:4118-4134. |
Valenta et al., “Synthesis of 4-Methoxyphenoxyacetic and 3,4,5-Trimethoxyphenoxyacetic Acid Amides and Hydrazides as Potential Neurotropic and Cardiovascular Agents”, Collection Czechoslovak Chem. Commun. (1987), 52:3013-3023. |
Valenta et al., “Basic Amides of 2,4,5-Trichlorophenoxyacetic, 2,4,6-Trimethylphenoxyacetic and 4-Bromo-3,5-Dimethylphenoxyacetic Acid and Some Related Compounds, Synthesis and Pharmacological Screening”, Collection Czechoslovak Chem. Commun. (1983), 48:1089-1096. |
Protiva et al., “Basic Amides of 3,4,5-Trimethoxyphenoxy Acedic Acid: Synthesis and Pharmacology of Trimethophenoxamide and Analogues”, Collection Czechoslovak Chem. Commun. (1977), 42:3628-3642. |
Petigara, et al., Synthesis and Central Nervous System Depressant Activity of New Piperazine and Related Derivatives III, J. Med. Chem (1969) 12(5):865-870. |
Vadodaria et al., “Synthesis and Central Nervous System Depressant Activity of New Piperazine Derivatives and Related Compounds II”, J. Med Chem (1969) 12(5):860-865. |
Hertz, F. et al., “Effect of rat and beta-human interferons on hyperacute experimental allergic encephhaomyelitis in rats”, Agents Actions (1985) 16(5):397-403. |
Rudick, R. A. et al., “In vivo effects on interferon beta-1a on immunosuppressive cytokines in multiple sclerosis”, Neurology (1998) 50:1294-1300. |
Ruuls S. R. et al., “The length of treatment determines whether IFN-beta prevents or aggravates experimental autoimmune encephalomyelitis in Lewis rats”, J. Immunol. (1996) 157:5721-5731. |
Yu, M. et al., “Interferon beta inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis”, J. Neuroimmunol. (1996) 64:91-100. |
Rottman, J. B. et al., Central Role of CCR1+ Cells in the Immunopathogenesis of Experimental Allergic Encephalomyelitis (EAE), FASEB (1999) 13(5):A666 Abstract 492-16. |