Piperidinone Carboxamide Derivatives as P2X7 Modulators

Information

  • Patent Application
  • 20100168171
  • Publication Number
    20100168171
  • Date Filed
    March 20, 2008
    16 years ago
  • Date Published
    July 01, 2010
    14 years ago
Abstract
The present invention relates to a compound of formula (I) or a pharmaceutically acceptable salt thereof:
Description

The present invention relates to heterocyclic amide derivatives which modulate P2X7 receptor function and are capable of antagonizing the effects of ATP at the P2X7 receptor (“P2X7 receptor antagonists”); to processes for their preparation; to pharmaceutical compositions containing them; and to the use of such compounds in therapy.


The P2X7 receptor is a ligand-gated ion-channel which is expressed in cells of the hematopoietic lineage, e.g. macrophages, microglia, mast cells, and lymphocytes (T and B) (see, for example, Collo, et al. Neuropharmacology, Vol. 36, pp 1277-1283 (1997)), and is activated by extracellular nucleotides, particularly adenosine triphosphate (ATP). Activation of P2X7 receptors has been implicated in giant cell formation, degranulation, cytolytic cell death, CD62L shedding, regulation of cell proliferation, and release of proinflammatory cytokines such as interleukin 1 (IL-1β) and tumour necrosis factor (TNFα) (e.g. Hide, et al. Journal of Neurochemistry, Vol 75., pp 965-972 (2000)). P2X7 receptors are also located on antigen presenting cells, keratinocytes, parotid cells, hepatocytes, erythrocytes, erythroleukaemic cells, monocytes, fibroblasts, bone marrow cells, neurones, and renal mesangial cells. Furthermore, the P2X7 receptor is expressed by presynaptic terminals in the central and peripheral nervous systems and has been shown to mediate glutamate release in glial cells (Anderson, C. et al. Drug. Dev. Res., Vol. 50, page 92 (2000)).


The localisation of the P2X7 receptor to key cells of the immune system, coupled with its ability to release important inflammatory mediators from these cells suggests a potential role of P2X7 receptor antagonists in the treatment of a wide range of diseases including pain and neurodegenerative disorders. Recent preclinical in vivo studies have directly implicated the P2X7 receptor in both inflammatory and neuropathic pain (Dell′Antonio et al., Neurosci. Lett., 327, pp 87-90, 2002,. Chessell, I P., et al., Pain, 114, pp 386-396, 2005) while there is in vitro evidence that P2X7 receptors mediate microglial cell induced death of cortical neurons (Skaper, S. D., et al., Program No. 937.7. 2005 Abstract Viewer/Itinerary Planner. Washington, D.C.: Society for Neuroscience, 2005. Online). In addition, up-regulation of the P2X7 receptor has been observed around β-amyloid plaques in a mouse model of Alzheimer's disease (Parvathenani, L. et al. J. Biol. Chem., Vol. 278(15), pp 13309-13317, 2003). WO 99/00362 (Leukosite, Inc.) discloses certain aminocarbonyl lactam compounds.


The present invention provides compounds which modulate P2X7 receptor function and are capable of antagonizing the effects of ATP at the P2X7 receptor (“P2X7 receptor antagonists”). A first aspect of the present invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof:







wherein:


R1 represents C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C3-6 cycloalkyl, C3-6 cycloalkylmethyl-, pyridinylmethyl- or benzyl, any of which is optionally substituted with 1, 2 or 3 halogen atoms; or an unsubstituted phenyl;


R2 and R3 independently represent hydrogen, C1-6 alkyl, C6-10 arylmethyl- or C3-6 cycloalkylmethyl-; and any of said C1-6 alkyl, C6-10 arylmethyl- or C3-6 cycloalkylmethyl- is optionally substituted with 1, 2 or 3 halogen (e.g. fluorine) atoms;


R4, R5, R6, R7, and R8 independently represent hydrogen, fluorine or methyl; and


R9, R10, R11, R12 and R13 independently represent hydrogen, halogen (e.g. fluorine or chlorine), cyano, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C3-6 cycloalkyl or phenyl, and any of said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C3-6 cycloalkyl or phenyl is optionally substituted with 1, 2 or 3 halogen (e.g. fluorine) atoms; or R12 and R13 together with the carbon atoms to which they are attached form a benzene ring which is optionally substituted with 1, 2 or 3 halogen (e.g. fluorine or chlorine) atoms; with the proviso that when R9 and R13 are both selected from hydrogen or fluorine, at least one of R10, R11 and R12 is a halogen atom.


As used herein, the term “alkyl” (when used as a group or as part of a group) refers to a straight or branched hydrocarbon chain containing the specified number of carbon atoms. For example, C1-6 alkyl means a straight or branched hydrocarbon chain containing at least 1 and at most 6 carbon atoms. Examples of alkyl include, but are not limited to; methyl (Me), ethyl (Et), n-propyl, i-propyl, n-hexyl and i-hexyl.


As used herein, the term “alkenyl” refers to a straight or branched hydrocarbon chain containing the specified number of carbon atoms wherein at least one carbon-carbon bond is a double bond. Examples of alkenyl include, but are not limited to ethenyl, propenyl, n-butenyl, i-butenyl, n-pentenyl and i-pentenyl.


As used herein, the term “alkynyl” refers to a straight or branched hydrocarbon chain containing the specified number of carbon atoms wherein at least one carbon-carbon bond is a triple bond. Examples of alkynyl include, but are not limited to ethynyl, propynyl, butynyl, i-pentynyl, n-pentynyl, i-hexynyl and n-hexynyl.


The term ‘cycloalkyl’ unless otherwise stated means a closed 3 to 6 membered non-aromatic ring, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.


The term ‘aryl’ as used herein refers to a C6-10 monocyclic or bicyclic hydrocarbon ring wherein at least one ring is aromatic. Examples of such groups include phenyl and naphthyl.


The term ‘halogen’ is used herein to describe, unless otherwise stated, a group selected from fluorine, chlorine, bromine or iodine.


It is to be understood that the present invention covers and discloses all possible combinations of particular, preferred, suitable, or other embodiments of groups (e.g. of R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 and/or R13), e.g. all possible combinations of embodiments of different groups, which embodiments are described herein.


In certain particular embodiments of the invention, R1 represents unsubstituted C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, or C3-6 cycloalkyl; or a benzyl optionally substituted with 1, 2 or 3 halogen atoms.


In a particular embodiment, R1 represents unsubstituted C1-6 alkyl or C3-6 cycloalkyl; or a benzyl optionally substituted with 1, 2 or 3 halogen atoms. In a more particular embodiment, R1 represents unsubstituted C1-5 alkyl (e.g. methyl, ethyl, n-propyl or i-propyl), C3-4 cycloalkyl or benzyl. In a still more particular embodiment, R1 represents unsubstituted C1-4 alkyl (e.g. methyl, ethyl, n-propyl or i-propyl) or C3-4 cycloalkyl.


Preferably, R1 represents methyl or ethyl.


In certain particular embodiments of the invention, R2 and R3 independently represent hydrogen or unsubstituted C1-6 alkyl, benzyl or C3-6 cycloalkylmethyl-. In a more particular embodiment, R2 and R3 both represent hydrogen.


In one particular embodiment of the invention, R4 and R5 both represent hydrogen.


In one particular embodiment of the invention, R6 and R7 both represent hydrogen.


In one particular embodiment of the invention, R8 represents hydrogen or methyl. Preferably, R8 represents hydrogen.


Preferably, R2, R3, R4, R5, R6 and R7 all represent hydrogen. Preferably, R2, R3, R4, R5, R6, R7 and R8 all represent hydrogen.


In one particular embodiment of the invention, R9, R10, R11, R12 and R13 independently represent hydrogen, halogen (e.g. fluorine or chlorine), cyano, trifluoromethyl or unsubstituted C1-6 alkyl.


In one more particular embodiment, R9, R10, R11, R12 and R13 independently represent hydrogen, halogen (e.g. fluorine or chlorine), cyano, methyl or trifluoromethyl. In a still more particular embodiment, R9, R10, R11, R12 and R13 independently represent hydrogen, chlorine, fluorine, bromine, methyl or trifluoromethyl; such as hydrogen, chlorine, fluorine, methyl or trifluoromethyl.


In all embodiments of the invention herein described, when R9 and R13 are both selected from hydrogen or fluorine, at least one of R10, R11 and R12 is a halogen atom.


In a particular embodiment of the invention herein described, when R9 and R13 are both selected from hydrogen or fluorine, at least one of R10, R11 and R12 is a halogen atom, and not more than one of R10, R11 and R12 is a CF3 group.


In a particular embodiment, R9 is hydrogen, R13 is fluorine or chlorine, and R10, R11 and R12 independently represent hydrogen, chlorine, fluorine or trifluoromethyl. In a more particular embodiment, R9 is hydrogen, R13 is fluorine or chlorine, one or two (e.g. two) of R10, R11 and R12 are hydrogen, and one or two (e.g. one) of R10, R11 and R12 independently represent chlorine, fluorine or trifluoromethyl. In a still more particular embodiment:


R9, R10 and R11 are hydrogen, R12 is trifluoromethyl, and R13 is chlorine, or


R9, R10 and R12 are hydrogen, and R11 and R13 are chlorine, or


R9, R10 and R12 are hydrogen, R11 is fluorine, and R13 is chlorine, or


R9 and R10 are hydrogen, and R11, R12 and R13 are fluorine.


In a particular embodiment, R9 is hydrogen, R13 is chlorine, and R10, R11 and R12 independently represent hydrogen, chlorine, fluorine or trifluoromethyl. In a more particular embodiment, R9 is hydrogen, R13 is chlorine, one or two (e.g. two) of R10, R11 and R12 are hydrogen, and one or two (e.g. one) of R10, R11 and R12 independently represent chlorine, fluorine or trifluoromethyl. In a preferable embodiment:


R9, R10 and R11 are hydrogen, R12 is trifluoromethyl, and R13 is chlorine, or


R9, R10 and R12 are hydrogen, and R11 and R13 are chlorine, or


R9, R10 and R12 are hydrogen, R11 is fluorine, and R13 is chlorine.


Preferably, R9, R10 and R11 are hydrogen, R12 is trifluoromethyl, and R13 is chlorine, or R9, R10 and R12 are hydrogen, and R11 and R13 are chlorine.


More preferably, R9, R10 and R11 are hydrogen, R12 is trifluoromethyl, and R13 is chlorine.


In one particular embodiment of the invention, there is provided a compound of formula (I), or a pharmaceutically acceptable salt thereof, wherein:


R1 represents unsubstituted C1-6 alkyl or C3-6 cycloalkyl; or a benzyl optionally substituted with 1, 2 or 3 halogen atoms (preferably R1 represents methyl or ethyl);


R2, R3, R4, R5, R6 and R7 all represent hydrogen;


R8 represents hydrogen or methyl (preferably hydrogen); and


R9, R10, R11, R12 and R13 independently represent hydrogen, chlorine, fluorine, bromine, methyl or trifluoromethyl;


with the proviso that when R9 and R13 are both selected from hydrogen or fluorine, at least one of R10, R11 and R12 is a halogen atom.


In one more particular embodiment of the invention,


R1 represents methyl or ethyl;


R2, R3, R4, R5, R6 and R7 all represent hydrogen;


R8 represents hydrogen; and


R9, R10, R11, R12 and R13 independently represent hydrogen, chlorine, fluorine, bromine, methyl or trifluoromethyl.


A particular aspect of the invention provides a compound selected from examples E1 to E22, as shown below and/or as described by name below.


A preferred aspect of the invention provides:


N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-1-ethyl-6-oxo-2-piperidinecarboxamide







N-[(2,4-dichlorophenyl)methyl]-1-methyl-6-oxo-2-piperidinecarboxamide







N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-1-methyl-6-oxo-2 piperidinecarboxamide







or


N-[(2,4-dichlorophenyl)methyl]-1-ethyl-6-oxo-2-piperidinecarboxamide







A more preferred aspect of the invention provides:


N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-1-ethyl-6-oxo-2-piperidinecarboxamide







(e.g. see Example E12), N-[(2,4-dichlorophenyl)methyl]-1-methyl-6-oxo-2-piperidinecarboxamide







(e.g. see Example E14), N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-1-methyl-6-oxo-2 piperidinecarboxamide







(e.g. see Example E15), or N-[(2,4-dichlorophenyl)methyl]-1-ethyl-6-oxo-2-piperidinecarboxamide







(e.g. see Example E18), each of which is in a form obtainable or prepared from L-2-amino-adipic acid







((S)-2-aminohexanedioic acid). L-2-amino-adipic acid is commercially available e.g. from Aldrich.


A particular aspect of the present invention provides a compound of formula (IA) or a pharmaceutically acceptable salt thereof:







wherein:


R1 represents C1-4 alkyl or C3-4 cycloalkyl, any of which is optionally substituted with 1, 2 or 3 halogen (e.g. fluorine) atoms, and R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 and R13 are as defined herein,


and wherein more than 50% (e.g. more than 70%, in particular more than 90%, such as more than 95%) by molarity of the compound of formula (IA) or the pharmaceutically acceptable salt thereof has the indicated stereochemistry at the ring-carbon atom bonded to R8.


In a particular embodiment of a compound of formula (IA) or a salt thereof, R1 represents unsubstituted C1-4 alkyl or C3-4 cycloalkyl; for example methyl, ethyl, n-propyl, i-propyl, cyclopropyl or cyclobutyl.


In a preferable embodiment of a compound of formula (IA) or a salt thereof, R1 represents methyl or ethyl.


All embodiments, e.g. particular or preferable features or aspects, of the invention (e.g. embodiments of the compound or salt of the invention and/or of pharmaceutical compositions and/or uses thereof) which are disclosed herein in relation to a compound of formula (I) or a salt thereof, are also hereby disclosed and contemplated in relation to a compound of formula (IA) or a salt thereof, to the extent appropriate or possible, with all necessary changes having been made to the wording.


An alternative particular aspect of the invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof, as disclosed herein, wherein the compound or salt is substantially racemic (e.g. racemic) at the ring-carbon atom bonded to R8.


Antagonists of P2X7 may be useful in preventing, treating, or ameliorating a variety of pain states (e.g. neuropathic pain, chronic inflammatory pain, and visceral pain), inflammation and neurodegeneration, in particular Alzheimer's disease. P2X7 antagonists may also constitute useful therapeutic agents in the management of rheumatoid arthritis and inflammatory bowel disease.


Compounds or salts of the present invention which modulate P2X7 receptor function and are capable of antagonizing the effects of ATP at the P2X7 receptor (“P2X7 receptor antagonists”) may be competitive antagonists, inverse agonists, or negative allosteric modulators of P2X7 receptor function.


Certain compounds of formula (I) may in some circumstances form acid addition salts thereof. It will be appreciated that for use in medicine compounds of formula (I) may be used as salts, in which case the salts should be pharmaceutically acceptable. Pharmaceutically acceptable salts include those described by Berge, Bighley and Monkhouse, J. Pharm. Sci., 1977, 66, 1-19. When a compound of the present invention is basic, pharmaceutically acceptable salts may be prepared from pharmaceutically acceptable acids, including inorganic and organic acids, e.g. by admixture of the compound and the acid. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like. In a particular embodiment, the pharmaceutically acceptable acid is benzenesulfonic, camphorsulfonic, ethanesulfonic, hydrobromic, hydrochloric, methanesulfonic, nitric, phosphoric, sulfuric, or p-toluenesulfonic acid.


Examples of pharmaceutically acceptable salts include salts formed from maleic, fumaric, benzoic, ascorbic, pamoic, succinic, hydrochloric, sulfuric, bismethylenesalicylic, methanesulfonic, ethanedisulfonic, propionic, tartaric, salicylic, citric, gluconic, aspartic, stearic, palmitic, itaconic, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, cyclohexylsulfamic, phosphoric and nitric acids.


The compounds of formula (I) or salts thereof may be prepared in crystalline or non-crystalline form, and, if crystalline, may optionally be solvated, e.g. as the hydrate. This invention includes within its scope stoichiometric solvates (e.g. hydrates) as well as compounds containing variable amounts of solvent (e.g. water).


Compounds of formula (I) or salts thereof are capable of existing in stereoisomeric forms (e.g. diastereomers and enantiomers) and the invention extends to each of these stereoisomeric forms and to mixtures thereof including racemates. The different stereoisomeric forms may be separated one from the other by the usual methods, or any given isomer may be obtained by stereospecific or asymmetric synthesis. In the examples given herein, the compositions of the final products have generally not been characterised and thus the stereochemistry of the final products have generally not been indicated. However, the chirality of the main component of the product mixture of the compound or salt will generally be expected to reflect that of the starting material; and/or the enantiomeric excess will generally depend on the synthetic method used and is likely to be similar to that of an analogous example (where such an example exists). Compounds or salts made in one chiral form are thus expected to be able to be prepared in the alternative chiral form using the appropriate starting material. Alternatively, if racemic starting materials are used, it would be expected that a racemic product would be produced and the single enantiomers could be separated by the usual methods. The invention also extends to any tautomeric forms and mixtures thereof.


The subject invention also includes isotopically-labeled compounds, which are identical to those recited in formula (I), or salts thereof, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number most commonly found in nature. Examples of isotopes that can be incorporated into compounds or salts of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, iodine, and chlorine, such as 3H, 11C, 14C, 18F, 123I and 125I.


Compounds of the present invention and pharmaceutically acceptable salts of said compounds that contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of the present invention. Isotopically-labeled compounds or salts of the present invention, for example those into which radioactive isotopes such as 3H, 14C are incorporated, are potentially useful in drug and/or substrate tissue distribution assays. Tritiated, i.e., 3H, and carbon-14, i.e., 14C, isotopes are optionally chosen for their ease of preparation and detectability. 11C and 8F isotopes are generally useful in PET (positron emission tomography), and 125I isotopes are generally useful in SPECT (single photon emission computerized tomography). PET and SPECT are useful in brain imaging. Further, substitution with heavier isotopes such as deuterium, i.e., 2H, can sometimes afford certain effects resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be chosen in some circumstances. Isotopically labeled compounds of formula (I) or salts thereof and following of this invention are in one embodiment prepared by carrying out the procedures disclosed in the Schemes and/or in the Examples below, by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent.


A further particular aspect of the invention provides a compound of formula (I) or a pharmaceutically acceptable salt thereof which is not a radioactive isotopically labeled compound or salt. In a particular embodiment, the compound or salt is not an isotopically labeled compound or salt.


Preparation of Compounds






Compounds of formula (I), wherein the variables are as defined above, and salts and solvates thereof may be prepared by the methodology described hereinafter, constituting a further aspect of this invention.


According to a further aspect of the invention, there is provided a process for preparing a compound of formula (I) or a pharmaceutically acceptable salt thereof which comprises:


(a) Coupling of a carboxylic acid of formula (2) (or an activated derivative thereof) with an amine of formula (3) (see Scheme 1), wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 and R13 are as defined above. Compounds (2) and (3) are optionally protected.


(b) The reaction of a dicarbonyl compound of formula (4), an isocyanide of formula (5) and an amine of formula (6) in a suitable solvent such as methanol and at a suitable temperature such as 100° C. (see Scheme 2), wherein R1, R2, R3, R4, R5, R7, R8, R9, R10, R11, R12 and R13 are as defined above. Compounds (4), (5) and (6) are optionally protected. Processes of this type have been described previously in the chemical literature (e.g. H. Tye, and M. Whittaker, Org. Biomol. Chem., 2004, 2, 813-815; G. C. B. Harriman WO 9900362 A1).


(c) Deprotecting a compound of formula (I) which is protected. Examples of protecting groups and the means for their removal can be found in T. W. Greene and P. G. M. Wuts ‘Protective Groups in Organic Synthesis’ (J. Wiley and Sons, 3rd Ed. 1999).


(d) Interconversion of compounds of formula (I) to other compounds of formula (I). Examples of conventional interconversion procedures include epimerisation, oxidation, reduction, alkylation, aromatic substitution, nucleophilic substitution, amide coupling and ester hydrolysis.







The coupling of an acid of formula (2) and an amine of formula (3) typically comprises the use of activating agents, such as N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride or polymer-supported carbodiimide, 1-hydroxybenzotriazole (HOBT) or 1-Hydroxy-7-azabenzotriazole (HOAt), and optionally a suitable base such as a tertiary alkylamine (e.g. diisopropylethylamine, N-ethyl morpholine, triethylamine) or pyridine, in a suitable solvent such as DMF and/or dichloromethane and at a suitable temperature e.g. between 0° C. and room temperature. Alternatively the coupling of (2) and (3) may be accomplished by treatment with O-(7-Azabenzotriazol-1-yl)-N,N,N′,N∝-tetramethyluronium hexafluorophosphate and a suitable tertiary alkylamine such as diisopropylethylamine in a suitable solvent such as dimethylformamide at a suitable temperature such as room temperature. Alternatively, the compound of formula (2) may be employed as an activated derivative (e.g. acid chloride, mixed anhydride, active ester (e.g. O-acyl-isourea)), and under such circumstances process (a) typically comprises treatment of said activated derivative with an amine (Ogliaruso, M. A.; Wolfe, J. F. in The Chemistry of Functional Groups (Ed. Patai, S.) Suppl.B: The Chemistry of Acid Derivatives, Pt. 1 (John Wiley and Sons, 1979), pp 442-8; Beckwith, A. L. J. in The Chemistry of Functional Groups (Ed. Patai, S.) Suppl.B: The Chemistry of Amides (Ed. Zabricky, J.)(John Wiley and Sons, 1970), pp 73 ff).







A representative method for the preparation of compounds of formula (2) is shown in Schemes 3 below:







wherein R1, R2, R3, R4, R5, R6, and R7 are as defined above and R8═H.


Analogous processes to those described below for the transformations outlined in scheme 3 have been described previously in the chemical literature (e.g. G. Verardo, P. Geatti, E. Pol, and A. G. Giumanini, Can. J. Chem., 80: 779-788 (2002); T. Godet, et. al., Organic Letters, (2004), 6(19), 3281-3284)


Step (i) typically comprises initial treatment of (7) with a base such as sodium hydroxide in a suitable solvent such as water at a suitable temperature such as room temperature followed by reductive alkylation which typically comprises subsequent treatment with an aldehyde or ketone and then addition of a reducing agent such as sodium borohydride at a suitable temperature such as between 0° C. and room temperature.


Step (ii) typically comprises heating of compound (8) at a suitable temperature, such as between 80° C. and 100° C., in a suitable solvent, such as ethanol, to afford compound (2).


Compounds of the general formulae (3), (4), (5), (6), and (7) are typically either available from commercial sources or can be prepared by a person skilled in the art using methods described in the chemical literature (or using analogous methods).


Where relevant, pharmaceutically acceptable salts may for example be prepared conventionally by reaction with the appropriate acid or acid derivative.


Clinical Indications

It is believed that, as compounds or pharmaceutically acceptable salts of the present invention modulate P2X7 receptor function and are capable of antagonizing the effects of ATP at the P2X7 receptor (P2X7 receptor antagonists), they may be useful in the treatment of pain, including acute pain, chronic pain, chronic articular pain, musculoskeletal pain, neuropathic pain, inflammatory pain, visceral pain, pain associated with cancer, pain associated with migraine, tension headache and cluster headaches, pain associated with functional bowel disorders, lower back and neck pain, pain associated with sprains and strains, sympathetically maintained pain; myositis, pain associated with influenza or other viral infections such as the common cold, pain associated with rheumatic fever, pain associated with myocardial ischemia, post operative pain, cancer chemotherapy, headache, toothache and dysmenorrhea.


Chronic articular pain conditions include rheumatoid arthritis, osteoarthritis, rheumatoid spondylitis, gouty arthritis and juvenile arthritis.


Pain associated with functional bowel disorders includes non-ulcer dyspepsia, non-cardiac chest pain and irritable bowel syndrome.


Neuropathic pain syndromes include: diabetic neuropathy, sciatica, non-specific lower back pain, trigeminal neuralgia, multiple sclerosis pain, fibromyalgia, HIV-related neuropathy, post-herpetic neuralgia, trigeminal neuralgia, and pain resulting from physical trauma, amputation, phantom limb syndrome, spinal surgery, cancer, toxins or chronic inflammatory conditions. In addition, neuropathic pain conditions include pain associated with normally non-painful sensations such as “pins and needles” (paraesthesias and dysesthesias), increased sensitivity to touch (hyperesthesia), painful sensation following innocuous stimulation (dynamic, static, thermal or cold allodynia), increased sensitivity to noxious stimuli (thermal, cold, mechanical hyperalgesia), continuing pain sensation after removal of the stimulation (hyperpathia) or an absence of or deficit in selective sensory pathways (hypoalgesia).


Other conditions which could potentially be treated by compounds or pharmaceutically acceptable salts of the present invention include fever, inflammation, immunological diseases, abnormal platelet function diseases (e.g. occlusive vascular diseases), impotence or erectile dysfunction; bone disease characterised by abnormal bone metabolism or resorbtion; hemodynamic side effects of non-steroidal anti-inflammatory drugs (NSAID's) and cyclooxygenase-2 (COX-2) inhibitors, cardiovascular diseases; neurodegenerative diseases and/or neurodegeneration, neurodegeneration following trauma, tinnitus, dependence on a dependence-inducing agent such as opiods (e.g. morphine), CNS depressants (e.g. ethanol), psychostimulants (e.g. cocaine) and nicotine; complications of Type I diabetes, kidney dysfunction, liver dysfunction (e.g. hepatitis, cirrhosis), gastrointestinal dysfunction (e.g. diarrhoea), colon cancer, overactive bladder and urge incontinence. Depression and alcoholism could potentially also be treated by compounds or pharmaceutically acceptable salts of the present invention.


Inflammatory conditions include skin conditions (e.g. sunburn, burns, eczema, dermatitis, allergic dermatitis, psoriasis), meningitis, ophthalmic diseases such as glaucoma, retinitis, retinopathies, uveitis and of acute injury to the eye tissue (e.g. conjunctivitis), inflammatory lung disorders (e.g. asthma, bronchitis, emphysema, allergic rhinitis, respiratory distress syndrome, pigeon fancier's disease, farmer's lung, chronic obstructive pulmonary disease (COPD), airways hyperresponsiveness); gastrointestinal tract disorders (e.g. aphthous ulcer, Crohn's disease, atopic gastritis, gastritis varialoforme, ulcerative colitis, coeliac disease, regional ileitis, irritable bowel syndrome, inflammatory bowel disease, gastrointestinal reflux disease); organ transplantation and other conditions with an inflammatory component such as vascular disease, migraine, periarteritis nodosa, thyroiditis, aplastic anaemia, Hodgkin's disease, sclerodoma, myaesthenia gravis, multiple sclerosis, sorcoidosis, nephrotic syndrome, Bechet's syndrome, gingivitis, myocardial ischemia, pyrexia, systemic lupus erythematosus, polymyositis, tendinitis, bursitis, and Sjogren's syndrome.


Immunological diseases include autoimmune diseases, immunological deficiency diseases or organ transplantation.


Bone diseases characterised by abnormal bone metabolism or resorbtion include osteoporosis (especially postmenopausal osteoporosis), hyper-calcemia, hyperparathyroidism, Paget's bone diseases, osteolysis, hypercalcemia of malignancy with or without bone metastases, rheumatoid arthritis, periodontitis, osteoarthritis, ostealgia, osteopenia, cancer cacchexia, calculosis, lithiasis (especially urolithiasis), solid carcinoma, gout and ankylosing spondylitis, tendinitis and bursitis.


Cardiovascular diseases include hypertension or myocardiac ischemia; atherosclerosis; functional or organic venous insufficiency; varicose therapy; haemorrhoids; and shock states associated with a marked drop in arterial pressure (e.g. septic shock).


Neurodegenerative diseases include dementia, particularly degenerative dementia (including senile dementia, dementia with Lewy bodies, Alzheimer's disease, Pick's disease, Huntingdon's chorea, Parkinson's disease and Creutzfeldt-Jakob disease, Amyotrophic Lateral Sclerosis (ALS) and motor neuron disease); vascular dementia (including multi-infarct dementia); as well as dementia associated with intracranial space occupying lesions; trauma; infections and related conditions (including HIV infection, meningitis and shingles); metabolism; toxins; anoxia and vitamin deficiency; and mild cognitive impairment associated with ageing, particularly Age Associated Memory Impairment.


The compounds of formula (I) or pharmaceutically acceptable salts thereof may also be useful for neuroprotection and in the treatment of neurodegeneration following trauma such as stroke, cardiac arrest, pulmonary bypass, traumatic brain injury, spinal cord injury or the like.


The compounds or pharmaceutically acceptable salts of the present invention may also be useful in the treatment of malignant cell growth and/or metastasis, and myoblastic leukaemia.


Complications of Type 1 diabetes include diabetic microangiopathy, diabetic retinopathy, diabetic nephropathy, macular degeneration, glaucoma, nephrotic syndrome, aplastic anaemia, uveitis, Kawasaki disease and sarcoidosis.


Kidney dysfunction includes nephritis, glomerulonephritis, particularly mesangial proliferative glomerulonephritis and nephritic syndrome.


It is to be understood that reference to treatment includes both treatment of established symptoms and prophylactic treatment, unless explicitly stated otherwise.


According to a further aspect of the invention, we therefore provide a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in therapy and/or for use in human or veterinary medicine.


According to another aspect of the invention, we provide a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in the treatment or prevention (e.g. treatment) of a condition which is mediated by P2X7 receptors, for example a condition or disease disclosed herein (in particular pain, inflammation or a neurodegenerative disease, more particularly pain such as inflammatory pain, neuropathic pain or visceral pain), e.g. in a mammal such as a human or rodent e.g. human or rat e.g. human.


According to a further aspect of the invention, we provide a method of treating a human or animal (e.g. rodent e.g. rat) subject, for example a human subject, suffering from a condition which is mediated by P2X7 receptors, for example a condition or disease disclosed herein (in particular pain, inflammation or a neurodegenerative disease, more particularly pain such as inflammatory pain, neuropathic pain or visceral pain), which comprises administering to said subject an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.


According to a further aspect of the invention we provide a method of treating a human or animal (e.g. rodent e.g. rat) subject, for example a human subject, suffering from pain, inflammation, an immunological disease, a bone disease or a neurodegenerative disease (in particular pain, inflammation or a neurodegenerative disease, more particularly pain such as inflammatory pain, neuropathic pain or visceral pain), which method comprises administering to said subject an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.


According to a yet further aspect of the invention we provide a method of treating a human or animal (e.g. rodent e.g. rat) subject, for example a human subject, suffering from inflammatory pain, neuropathic pain or visceral pain which method comprises administering to said subject an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.


According to a further aspect of the invention we provide a method of treating a subject, for example a human subject, suffering from Alzheimer's disease which method comprises administering to said subject an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.


According to another aspect of the invention, we provide the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment or prevention (e.g. treatment) of a condition which is mediated by the action of P2X7 receptors, for example a condition or disease disclosed herein (in particular pain, inflammation or a neurodegenerative disease, more particularly pain such as inflammatory pain, neuropathic pain or visceral pain), e.g. in a mammal such as a human or rodent e.g. human or rat e.g. human.


According to another aspect of the invention we provide the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment or prevention (e.g. treatment) of pain, inflammation, an immunological disease, a bone disease or a neurodegenerative disease (in particular pain, inflammation or a neurodegenerative disease, more particularly pain such as inflammatory pain, neuropathic pain or visceral pain), e.g. in a mammal such as a human or rodent e.g. human or rat e.g. human.


According to another aspect of the invention we provide the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment or prevention (e.g. treatment) of inflammatory pain, neuropathic pain or visceral pain, e.g. in a mammal such as a human or rodent e.g. human or rat e.g. human.


In one aspect of the invention we provide the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment or prevention (e.g. treatment) of Alzheimer's disease, e.g. in a mammal such as a human or rodent e.g. human or rat e.g. human.


In order to use a compound of formula (I) or a pharmaceutically acceptable salt thereof for the treatment of humans and other mammals, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition. Therefore in another aspect of the invention there is provided a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt thereof, adapted for use in human or veterinary medicine.


In order to use a compound of formula (I) or a pharmaceutically acceptable salt thereof in therapy, it will normally be formulated into a pharmaceutical composition in accordance with standard pharmaceutical practice.


The present invention also provides a pharmaceutical composition, which comprises a compound of formula (I) or a pharmaceutically acceptable salt thereof, and optionally a pharmaceutically acceptable carrier or excipient.


The pharmaceutical composition may be for use in a method of treatment or in a use or in a treatment or prevention, as described herein.


A pharmaceutical composition of the invention, which may be prepared by admixture, suitably at ambient temperature and atmospheric pressure, is usually adapted for oral, parenteral or rectal administration and, as such, may be in the form of tablets, capsules, oral liquid preparations, powders, granules, lozenges, reconstitutable powders, injectable or infusable solutions or suspensions or suppositories. Orally administrable compositions are generally preferred.


Tablets and capsules for oral administration may be in unit dose form, and may contain conventional excipients, such as binding agents, fillers, tabletting lubricants, disintegrants and acceptable wetting agents. The tablets may be coated according to methods well known in normal pharmaceutical practice.


Oral liquid preparations may be in the form of, for example, aqueous or oily suspension, solutions, emulsions, syrups or elixirs, or may be in the form of a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), preservatives, and, if desired, conventional flavourings or colourants.


For parenteral administration, fluid unit dosage forms are for example prepared utilising a compound of the invention or pharmaceutically acceptable salt thereof and a sterile vehicle. In one particular embodiment, the compound or salt, depending on the vehicle and concentration used, is either suspended or dissolved in the vehicle. In preparing solutions, the compound or salt can e.g. be dissolved for injection and filter sterilised before filling into a suitable vial or ampoule and sealing. In one embodiment, adjuvant(s) such as a local anaesthetic, preservative and/or buffering agent are dissolved in the vehicle. To enhance the stability, the composition can for example be frozen after filling into the vial and the water removed under vacuum. Parenteral suspensions are typically prepared in substantially the same manner, except that the compound or salt is typically suspended in the vehicle instead of being dissolved, and sterilization cannot readily be accomplished by filtration. The compound or salt can be sterilised e.g. by exposure to ethylene oxide before suspension in a sterile vehicle. In a particular embodiment, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.


In one embodiment, the composition contains from 0.1% to 99% by weight, in particular from 10 to 60% by weight, of the active material (the compound or pharmaceutically acceptable salt of the invention), e.g. depending on the method of administration.


The dose of the compound or pharmaceutically acceptable salt thereof used in the treatment or prevention (e.g. treatment) of the aforementioned disorders/diseases/conditions may vary in the usual way with the seriousness of the disorders, the weight of the sufferer, and/or other similar factors. However, as a general guide, a unit dose of 0.05 to 1000 mg, for example 0.05 to 200 mg, such as 20 to 40 mg, of the compound or pharmaceutically acceptable salt of the invention (measured as the compound), may be used in one embodiment. In one embodiment, such a unit dose is for administration once a day e.g. to a mammal such as a human; alternatively such a unit dose may be for administration more than once (e.g. twice) a day e.g. to a mammal such as a human. Such therapy may extend for a number of weeks or months.


Combinations

Compounds of formula (I) or salts thereof may be used in combination with other therapeutic agents, for example medicaments which are or may be useful in the treatment of the above mentioned disorders.


Suitable examples of other such therapeutic agents may include a β2-agonist (also known as β2 adrenoceptor agonists; e.g. formoterol) and/or a corticosteroid (e.g. budesonide, fluticasone (e.g. as propionate or furoate esters), mometasone (e.g. as furoate), beclomethasone (e.g. as 17-propionate or 17,21-dipropionate esters), ciclesonide, triamcinolone (e.g. as acetonide), flunisolide, rofleponide and butixocort (e.g. as propionate ester), for the treatment of respiratory disorders (such as asthma and chronic obstructive pulmonary disease (COPD)) as described in WO 2007/008155 and WO 2007/008157.


A further therapeutic agent may include a 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase inhibitor (e.g. atorvastatin, fluvastatin, lovastatin, pravastatin, rosuvastatin, and simvastatin) for the treatment of cardiovascular disorders (such as atherosclerosis) as described in WO 2006/083214.


A further therapeutic agent may include a non-steroid anti-inflammatory drug (NSAID; e.g. ibuprofen, naproxen, aspirin, celecoxib, diclofenac, etodolac, fenoprofen, indomethacin, ketoprofen, ketoralac, oxaprozin, nabumetone, sulindac, tolmetin, rofecoxib, valdecoxib, lumaricoxib, meloxicam, etoricoxiband and parecoxib) for the treatment of an inflammatory disease or disorder (such as rheumatoid arthritis or osteoarthritis) as described in WO 2005/025571.


A further therapeutic agent may include a tumour necrosis factor α (TNFα) inhibitor (e.g. Etanercept or an anti-TNFα antibody such as Infliximab and Adalimumab) for the treatment of an inflammatory disease or disorder (such as rheumatoid arthritis or osteoarthritis) as described in WO 2004/105798.


A further therapeutic agent may include 2-hydroxy-5-[[4-[(2-pyridinylamino) sulfonyl]phenyl]azo]benzoic acid (sulfasalazine) for the treatment of an inflammatory disease or disorder (such as rheumatoid arthritis) as described in WO 2004/105797.


A further therapeutic agent may include N-[4-[[(2,4-diamino-6-pteridinyl)methyl]methylamino]benzoyl]-L-glutamic acid (methotrexate) for the treatment of an inflammatory disease or disorder (such as rheumatoid arthritis) as described in WO 2004/105796.


A further therapeutic agent may include an inhibitor of pro TNFα convertase enzyme (TACE) for the treatment of an inflammatory disease or disorder (such as rheumatoid arthritis) as described in WO 2004/073704.


A further therapeutic agent may include:


a) sulfasalazine;


b) a statin, such as atorvastatin, lovastatin, pravastatin, simvastatin, fluvastatin, cerivastatin, crilvastatin, dalvastatin, rosuvastatin, tenivastatin, fluindostatin, velostatin, dalvastatin, nisvastatin, bervastatin, pitavastatin, rivastatin, glenvastatin, eptastatin, tenivastatin, flurastatin, rosuvastatin or itavastatin;


c) a glucocorticoid agent, such as dexamethasone, methylprednisolone, prednisolone, prednisone and hydrocortisone;


d) an inhibitor of p38 kinase;


e) an anti-IL-6-receptor antibody;


f) anakinra;


g) an anti-IL-1 monoclonal antibody;


h) an inhibitor of JAK3 protein tyrosine kinase;


i) an anti-macrophage colony stimulation factor (M-CSF) monoclonal antibody; or


j) an anti-CD20 monoclonal antibody, such as rituximab, PRO70769, HuMax-CD20 (Genmab AJS), AME-133 (Applied Molecular Evolution), or hA20 (Immunomedics, Inc.)


for the treatment of an IL-1 mediated disease (such as rheumatoid arthritis) as described in WO 2006/003517.


When the compounds are used in combination with other therapeutic agents, the compounds may be administered either sequentially or simultaneously by any convenient route.


The invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof together with a further therapeutic agent or agents.


The combinations referred to above may conveniently be presented for use in the form of a pharmaceutical formulation and thus pharmaceutical formulations comprising a combination as defined above together with a pharmaceutically acceptable carrier or excipient comprise a further aspect of the invention. The individual components of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical formulations.


When a compound of formula (I) or a pharmaceutically acceptable salt thereof is used in combination with a second therapeutic agent active against the same disease state the dose of each compound may differ from that when the compound is used alone.


The following Descriptions and Examples illustrate the preparation of compounds of the invention but are not intended to be limiting.







EXAMPLES

The general methods (a)-(d) along with the synthetic methods outlined in Schemes 1-3 above, for the preparation of compounds of the present invention are further illustrated by the following examples.


Example 1
N-[(2,4-dichlorophenyl)methyl]-1,2-dimethyl-6-oxo-2-piperidinecarboxamide (E1)






To a solution of (2,4-dichlorophenyl)methyl isocyanide (0.075 g, 0.4 mmol) and 4-acetylbutyric acid (0.048 ml, 0.4 mmol) in methanol (2 ml) was added a 33% solution of methylamine in ethanol (0.056 ml, 0.6 mmol). The mixture was heated to 100° C. in a microwave reactor for 30 minutes and then the mixture was evaporated in vacuo. The residue was purified by mass-directed automated HPLC to give N-[(2,4-dichlorophenyl)methyl]-1,2-dimethyl-6-oxo-2-piperidinecarboxamide (0.054 g) as a white solid. LC/MS [M+H]+=329/331, retention time=2.46 minutes.


Example 2
1-Cyclobutyl-N-[(2,4-dichlorophenyl)methyl]-2-methyl-6-oxo-2-piperidinecarboxamide (E2)






1-Cyclobutyl-N-[(2,4-dichlorophenyl)methyl]-2-methyl-6-oxo-2-piperidinecarboxamide was prepared in a manner analogous to that described above for example 1 but using cyclobutylamine in the place of a 33% solution of methylamine in ethanol.


LC/MS [M+H]+=369, retention time=2.91 minutes.


Example 3
N-[(2,4-dichlorophenyl)methyl]-1-ethyl-6-oxo-2-piperidinecarboxamide (E3)






N-[(2,4-dichlorophenyl)methyl]-1-ethyl-6-oxo-2-piperidinecarboxamide was prepared in a manner analogous to that described above for example 1 but using 5-oxopentanoic acid (prepared as described below) in the place of 4-acetylbutyric acid and using a 2M solution of ethylamine in methanol in the place of a 33% solution of methylamine in ethanol. LC/MS [M+H]+=329/331, retention time=2.36 minutes.


The 5-oxopentanoic acid used in the method described above can be prepared as follows:


(i) Methyl 5,5-bis(methyloxy)pentanoate (1.76 g, 10 mmol) was stirred at room temperature in a mixture of 1M aqueous sodium hydroxide (20 ml) and ethanol (10 ml) for 16 hrs. The pH of the mixture was then adjusted to ˜5.6 and the mixture was extracted with 5 portions of dichloromethane. The combined organic layers were concentrated to give crude 5,5-bis(methyloxy)pentanoic acid (1.48 g) as an oil which was used in the next step without further purification.


(ii) Crude 5,5-bis(methyloxy)pentanoic acid (1.48 g, 9.1 mmol) was stirred at room temperature in a 0.5N solution of hydrogen chloride in acetone for 2 hrs. The mixture was then concentrated in vacuo and azeotroped three times with toluene and then with chloroform to give an oil. This material was purified by flash silica-gel column chromatography, eluting with a gradient of 0-100% acetone in hexane on a Biotage Horizon, to give 5-oxopentanoic acid (0.711 g) which was used without any additional purification.


Examples 4-5

In a manner analogous to that described for Example 3 above the compounds tabulated below (Table 1) were prepared by substituting the appropriate amine for the 2M solution of ethylamine in methanol used in the above procedure. All of the amines used for making the compounds shown in Table 1 are available from commercial sources or can be prepared using routes described previously in the chemical literature or analogous methods.












TABLE 1








Retention


Example


time


no.
Chemical name
[M + H]+
(mins)







E4





315/317
2.22





E5





341/343
2.36









Example 6
N-[(2-chloro-4-fluorophenyl)methyl]-6-oxo-1-(phenylmethyl)-2-piperidinecarboxamide (E6)






6-Oxo-1-(phenylmethyl)-2-piperidinecarboxylic acid (0.117 g, 0.5 mmol, prepared as described below) was suspended in dichloromethane (5 ml) and treated with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.144 g, 0.75 mmol) and 1-hydroxybenzotriazole (0.102 g, 0.75 mmol). The mixture was stirred at room temperature for 15 minutes and then [(2-chloro-4-fluorophenyl)methyl]amine (0.096 g, 0.6 mmol) was added to the mixture and stirring at room temperature was continued for a further 48 hrs. The mixture was concentrated and partitioned between ethyl acetate and water. The ethyl acetate layer was separated and washed sequentially with 3N aqueous citric acid, water, saturated aqueous sodium hydrogen carbonate, water, and brine and then dried over anhydrous sodium sulphate. Concentration of the organic layer gave an oil which was purified by automated flash silica-gel column chromatography (Biotage SP4), eluting with a gradient of 0-100% ethyl acetate in hexane, to give N-[(2-chloro-4-fluorophenyl)methyl]-6-oxo-1-(phenylmethyl)-2-piperidinecarboxamide (0.113 g) as an oil. LC/MS [M+H]+=375/377, retention time=2.63 minutes.


The 6-Oxo-1-(phenylmethyl)-2-piperidinecarboxylic acid used in the method described above can be prepared as follows:


DL-2-amino-adipic acid (1.61 g, 10 mmol) was dissolved in 2M aqueous sodium hydroxide (10 ml, 20 mmol) and treated with a solution of benzaldehyde (1.27 ml, 10 mmol) in ethanol (3 ml). The mixture was stirred at room temperature for 15 minutes then cooled to 0° C. and treated with sodium borohydride (0.130 g, 3.3 mmol). The mixture was stirred at room temperature for 2 hrs, then washed with 3 portions of diethyl ether. The aqueous mixture was then acidified to pH2 using concentrated aqueous hydrogen chloride. The resulting precipitate was collected by filtration and washed with a small volume of acetonitrile and then with 3 portions of diethyl ether. Finally azeotroping with ethanol afforded a white solid (3.2 g). The solid was suspended in ethanol (55 ml) and heated at reflux overnight. Concentration in vacuo and azeotroping with chloroform gave 6-Oxo-1-(phenylmethyl)-2-piperidinecarboxylic acid (1.79 g). LC/MS [M+H]+=234.


Examples 7-10

In a manner analogous to that described for Example 6 above the compounds tabulated below (Table 2) were prepared by substituting the appropriate amine (or salt thereof) for the [(2-chloro-4-fluorophenyl)methyl]amine used in the above procedure and/or substituting the appropriate aldehyde for the benzaldehyde used in the above procedure. All of the amines and aldehydes used for making the compounds shown in Table 2 are available from commercial sources or can be prepared using routes described previously in the chemical literature or analogous methods.












TABLE 2








Retention


Example


time


no.
Chemical name
[M + H]+
(mins)







E7





425/427
2.87





E8





391/393
2.82





E9





405/407
2.87





 E10





493/495
3.02









Example 11
N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-6-oxo-1-(phenylmethyl)-2-piperidinecarboxamide (E11) (in a form obtainable or prepared from L-2-amino-adipic acid)






6-Oxo-1-(phenylmethyl)-2-piperidinecarboxylic acid (0.117 g, 0.5 mmol, prepared according to the method described below starting from L-2-amino-adipic acid) was dissolved in dichloromethane (5 ml) and treated with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.191 g, 1.0 mmol) and 1-hydroxybenzotriazole (0.135 g, 1.0 mmol). The mixture was stirred at room temperature for 30 minutes and then [(2-chloro-3-trifluoromethylphenyl)methyl]amine (0.209 g, 1.0 mmol) was added to the mixture and stirring at room temperature was continued overnight. The mixture was washed sequentially with water, 3N aqueous citric acid, and more water (3×), and then dried using a hydromatrix cartridge. Concentration of the organic layer gave a residue which was purified by mass-directed automated HPLC to give N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-6-oxo-1-(phenylmethyl)-2-piperidinecarboxamide. LC/MS [M+H]+=425/427, retention time=2.85 minutes.


The 6-Oxo-1-(phenylmethyl)-2-piperidinecarboxylic acid used in the method described above was prepared as follows:


L-2-amino-adipic acid







(S)-2-aminohexanedioic acid, e.g. available from Aldrich) (1.61 g, 10 mmol) was dissolved in 2M aqueous sodium hydroxide (10 ml, 20 mmol) and treated with a solution of benzaldehyde (1.1 ml, 10 mmol) in ethanol (5 ml). The mixture was stirred at room temperature for 30 minutes then cooled to 0° C. and treated with sodium borohydride (0.130 g, 3.3 mmol). The mixture was stirred at room temperature for 4 hrs, then washed with 3 portions of diethyl ether. The aqueous mixture was then acidified to pH2 using concentrated aqueous hydrogen chloride. No precipitate formed so the pH was readjusted to pH5-6, using sodium hydrogen carbonate, and the mixture was concentrated to give a wet solid. Azeotroping with toluene (2×), an ethanol and toluene mixture, and ethanol (2×) was followed by suspending the solid in ethanol (50 ml) and heating at reflux overnight. The mixture was then cooled, salts were filtered off (washing with further ethanol), and the filtrate was concentrated. Trituration with diethyl ether gave 6-Oxo-1-(phenylmethyl)-2-piperidinecarboxylic acid (1.26 g). LC/MS [M+H]+=234.


Examples 12-18
In Forms Obtainable or Prepared from L-2-Amino-Adipic Acid

In a manner analogous to that described for Example 11 above the compounds tabulated below (Table 3) were prepared by substituting the appropriate amine (or salt thereof) for the [(2-chloro-3-trifluoromethylphenyl)methyl]amine used in the above procedure from Example 11 and/or substituting the appropriate aldehyde for the benzaldehyde used in the above procedure. All of the amines and aldehydes used for making the compounds shown in Table 3 are available from commercial sources or can be prepared using routes described previously in the chemical literature or analogous methods.












TABLE 3








Retention


Example


time


no.
Chemical name
[M + H]+
(mins)







E12





363/365
2.44





E13





 391/393/ 395
2.82





E14





315/317
2.24





E15





315
2.11





E16





315
2.11





E17





313/315
2.15





E18





329/331
2.36









Example 19
N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-6-oxo-1-(phenylmethyl)-2-piperidinecarboxamide (E19) (in a form obtainable or prepared from D-2-amino-adipic acid)






N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-6-oxo-1-(phenylmethyl)-2-piperidinecarboxamide was prepared in an analogous manner to that described above for Example 11 but using D-2-amino-adipic acid







e.g. available fron Aldrich) in the place of L-2-amino-adipic acid. LC/MS [M+H]+=425/427, retention time=2.85 minutes.


Examples 20-22
In Forms Obtainable or Prepared from D-2-Amino-Adipic Acid

In a manner analogous to that described for Example 19 above the compounds tabulated below (Table 4) were prepared by substituting the appropriate amine (or salt thereof) for the [(2-chloro-3-trifluoromethylphenyl)methyl]amine used in the above procedure from Example 19 and/or substituting the appropriate aldehyde for the benzaldehyde used in the above procedure. All of the amines and aldehydes used for making the compounds shown in Table 4 are available from commercial sources or can be prepared using routes described previously in the chemical literature or analogous methods.












TABLE 4








Retention


Example


time


no.
Chemical name
[M + H]+
(mins)







E20





 391/393/ 395
2.83





E21





329/331
2.36





E22





363/365
2.44









Microwave Reactor

Where indicated in the above examples, the microwave reactor used was a Biotage Initiator™. Reactions were carried out using normal power output unless specified otherwise.


Mass-Directed Automated HPLC

Where indicated in the above examples, purification by mass-directed automated HPLC was carried out using the following apparatus and conditions:


Hardware

Waters 2525 Binary Gradient Module


Waters 515 Makeup Pump


Waters Pump Control Module


Waters 2767 Inject Collect


Waters Column Fluidics Manager


Waters 2996 Photodiode Array Detector


Waters ZQ Mass Spectrometer


Gilson 202 fraction collector


Gilson Aspec waste collector


Software

Waters MassLynx version 4 SP2


Column

The columns used are Waters Atlantis, the dimensions of which are 19 mm×100 mm (small scale) and 30 mm×100 mm (large scale). The stationary phase particle size is 5 μm.


Solvents

A: Aqueous solvent=Water+0.1% Formic Acid


B: Organic solvent=Acetonitrile+0.1% Formic Acid


Make up solvent=Methanol:Water 80:20


Needle rinse solvent=Methanol


Methods

There are five methods used depending on the analytical retention time of the compound of interest. They have a 13.5-minute runtime, which comprises a 10-minute gradient followed by a 3.5 minute column flush and re-equilibration step.


Large/Small Scale 1.0-1.5=5-30% B


Large/Small Scale 1.5-2.2=15-55% B


Large/Small Scale 2.2-2.9=30-85% B


Large/Small Scale 2.9-3.6=50-99% B


Large/Small Scale 3.6-5.0=80-99% B (in 6 minutes followed by 7.5 minutes flush and re-equilibration)


Flow Rate

All of the above methods have a flow rate of either 20 mls/min (Small Scale) or 40 mls/min (Large Scale).


Liquid Chromatography/Mass Spectrometry

Analysis of the above Examples by Liquid Chromatography/Mass Spectrometry (LC/MS) was carried out using the following apparatus and conditions:


Hardware

Agilent 1100 Gradient Pump


Agilent 1100 Autosampler


Agilent 1100 DAD Detector


Agilent 1100 Degasser


Agilent 1100 Oven


Agilent 1100 Controller


Waters ZQ Mass Spectrometer


Sedere Sedex 85


Software

Waters MassLynx version 4.0 SP2


Column

The column used is a Waters Atlantis, the dimensions of which are 4.6 mm×50 mm. The stationary phase particle size is 3 μm.


Solvents

A: Aqueous solvent=Water+0.05% Formic Acid


B: Organic solvent=Acetonitrile+0.05% Formic Acid


Method

The generic method used has a 5 minute runtime.
















Time/min
% B



















0
3



0.1
3



4
97



4.8
97



4.9
3



5.0
3










The above method has a flow rate of 3 ml/mins.


The injection volume for the generic method is 5 ul.


The column temperature is 30 deg.


The UV detection range is from 220 to 330 nm.


Pharmacological Data

Compounds of the invention may be tested for in vitro biological activity at the P2X7 receptor in accordance with the following studies:


Ethidium Accumulation Assay

Studies were performed using NaCl assay buffer of the following composition (in mM): 140 mM NaCl, HEPES 10, N-methyl-D-glucamine 5, KCl 5.6, D-glucose 10, CaCl2 0.5 (pH 7.4). HEK293 cells, expressing human recombinant P2X7 receptors, were grown in poly-L-lysine pretreated 96 well plates for 18-24 h. (The cloning of the human P2X7 receptor is described in U.S. Pat. No. 6,133,434). The cells were washed twice with 350 μl of assay buffer before addition of 50 μl of antagonist. The cells were then incubated at room temperature (19-21° C.) for 30 min before addition of ATP and ethidium (100 μM final assay concentration). The ATP concentration was chosen to be close to the EC80 for the receptor type and was 1 mM for studies on the human P2X7 receptor. Incubations were continued for 8 or 16 min and were terminated by addition of 25 μl of 1.3M sucrose containing 5 mM of the P2X7 receptor antagonist reactive black 5 (Aldrich). Cellular accumulation of ethidium was determined by measuring fluorescence (excitation wavelength of 530 nm and emission wavelength of 620 nm) from below the plate with a Can berra Packard Fluorocount (Pangbourne, UK). Antagonist pIC50 values for blocking ATP responses were determined using iterative curve fitting techniques.


Fluorescent Imaging Plate Reader (FLIPR) Ca Assay

Studies were performed using NaCl assay buffer of the following composition (in mM) for human P2X7: 137 NaCl; 20 HEPES; 5.37 KCl; 4.17 NaHCC3; 1 CaCl2; 0.5 MgSC4; and 1 g/L of D-glucose (pH 7.4).


HEK293 cells, expressing human recombinant P2X7 receptors, were grown in poly-L-lysine pretreated 384 well plates for 42-48 h. (The cloning of the human P2X7 receptor is described in U.S. Pat. No. 6,133,434). The cells were washed three times with 80 μl of assay buffer, loaded for 1 h at 37° C. with 2 μM Fluo4 (Teflabs), washed three times again, and left with 30 μl buffer before the addition of 10 μl of 4× concentrated antagonist. The cells were then incubated at room temperature for 30 mins before addition (online, by FLIPR384 or FLIPR3 instrument (Molecular Devices)) of Benzoylbenzoyl-ATP (BzATP) 60 μM final assay concentration. The BzATP concentration was chosen to be close to the ECB, for the receptor type. Incubations and reading were continued for 90 sec, and intracellular calcium increase was determined by measuring fluorescence (excitation wavelength of 488 nm and emission wavelength of 516 nm) from below the plate, with FLIPR CCD camera. Antagonist pIC50 values for blocking BzATP responses were determined using iterative curve fitting techniques.


The compounds of Examples 1-22 were tested in the FLIPR Ca Assay and/or the Ethidium Accumulation Assay for human P2X7 receptor antagonist activity and found to have pIC50 values >4.7 in the FLIPR Ca Assay and/or pIC50 values >5.5 in the Ethidium Accumulation Assay.


The compounds of Examples E3, E4, E5, E6, E7, E8, E9, E10, E12, E14, E15, E17, E18, E19, E20, E21 and E22 were found to have pIC50 values of about 7.0 or more in the Ethidium Accumulation Assay. The compounds of Examples E3, E4, E5, E12, E14, E15, E18, E19, E20 and E22 were found to have pIC50 values of about 7.7 or more in the Ethidium Accumulation Assay. The compounds of Examples E12, E14, E15 and E18 were found to have pIC50 values of about 7.9 or more in the Ethidium Accumulation Assay.

Claims
  • 1-16. (canceled)
  • 17. A compound of formula (I) or a pharmaceutically acceptable salt thereof:
  • 18. The compound or salt according to claim 17, wherein R1 represents unsubstituted C1-6alkyl or C3-6 cycloalkyl; or a benzyl optionally substituted with 1, 2 or 3 halogen atoms.
  • 19. The compound or salt according to claim 17, wherein R1 represents methyl or ethyl.
  • 20. The compound or salt according to claim 17, wherein R2, R3, R4, R5, R6 and R7 all represent hydrogen.
  • 21. The compound or salt according to claim 17, wherein R8 represents hydrogen.
  • 22. The compound or salt according to claim 17, wherein R9, R10, R11, R12 and R13 independently represent hydrogen, halogen, methyl or trifluoromethyl.
  • 23. The compound or salt according to claim 17, wherein: R1 represents unsubstituted C1-6 alkyl or C3-6 cycloalkyl; or a benzyl optionally substituted with 1, 2 or 3 halogen atoms;R2, R3, R4, R5, R6 and R7 all represent hydrogen;R8 represents hydrogen or methyl; andR9, R10, R11, R12 and R13 independently represent hydrogen, chlorine, fluorine, bromine, methyl or trifluoromethyl.
  • 24. The compound or salt according to claim 17, wherein: R1 represents methyl or ethyl;R2, R3, R4, R5, R6 and R7 all represent hydrogen;R8 represents hydrogen; andR9, R10, R11, R12 and R13 independently represent hydrogen, chlorine, fluorine, bromine, methyl or trifluoromethyl.
  • 25. The compound or salt according to claim 24, wherein: R9, R10 and R11 are hydrogen, R12 is trifluoromethyl, and R13 is chlorine, orR9, R10 and R12 are hydrogen, and R11 and R13 are chlorine, orR9, R10 and R12 are hydrogen, R11 is fluorine, and R13 is chlorine, orR9 and R10 are hydrogen, and R11, R12 and R13 are fluorine.
  • 26. A compound which is: N-[(2,4-dichlorophenyl)methyl]-1,2-dimethyl-6-oxo-2-piperidinecarboxamide;1-cyclobutyl-N-[(2,4-dichlorophenyl)methyl]-2-methyl-6-oxo-2-piperidinecarboxamide;1-cyclopropyl-N-[(2,4-dichlorophenyl)methyl]-6-oxo-2-piperidinecarboxamide;N-[(2-chloro-4-fluorophenyl)methyl]-6-oxo-1-(phenylmethyl)-2-piperidinecarboxamide;N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-6-oxo-1-(phenylmethyl)-2-piperidinecarboxamide;N-[(2,4-dichlorophenyl)methyl]-6-oxo-1-(phenylmethyl)-2-piperidinecarboxamide;N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-1-(2,2-dimethylpropyl)-6-oxo-2-piperidinecarboxamide;N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-1-[(2,6-dichlorophenyl)methyl]-6-oxo-2-piperidinecarboxamide;1-ethyl-6-oxo-N-[(2,3,4-trifluorophenyl)methyl]-2-piperidinecarboxamide; orN-[(2-chloro-4-fluorophenyl)methyl]-1-ethyl-6-oxo-2-piperidinecarboxamide.
  • 27. The compound according to claim 17 which is N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-1-ethyl-6-oxo-2-piperidinecarboxamide of the formula:
  • 28. The compound according to claim 17 which is N-[(2,4-dichlorophenyl)methyl]-1-methyl-6-oxo-2-piperidinecarboxamide of the formula:
  • 29. The compound according to claim 17 which is N-{[2-chloro-3-(trifluoromethyl)phenyl]methyl}-1-methyl-6-oxo-2-piperidinecarboxamide of the formula:
  • 30. The compound according to claim 17 which is N-[(2,4-dichlorophenyl)methyl]-1-ethyl-6-oxo-2-piperidinecarboxamide of the formula:
  • 31. A pharmaceutical composition which comprises the compound of formula (I) or a pharmaceutically acceptable salt thereof, as defined in claim 17, and a pharmaceutically acceptable carrier or excipient.
  • 32. A method of treating a human suffering from pain, inflammation or a neurodegenerative disease, which method comprises administering to said human an effective amount of the compound or a pharmaceutically acceptable salt thereof as defined in claim 17.
  • 33. A method of treating a human suffering from inflammatory pain, neuropathic pain or visceral pain, which method comprises administering to said human an effective amount of the compound or a pharmaceutically acceptable salt thereof as defined in claim 17.
Priority Claims (2)
Number Date Country Kind
0706030.4 Mar 2007 GB national
0805047.8 Mar 2008 GB national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP08/53433 3/20/2008 WO 00 9/25/2009