The present invention relates generally to pipette tip trays and, more particularly, to stackable pipette tip trays for use with pipette tips, including filter pipette tips.
Disposable pipette tips are often packaged within trays that function to support and organize the pipette tips and to aid in the placement of one or more pipette tips onto a pipetter having one or more channels. These trays may be housed within a container or rack that is convenient for bench-top applications.
Often, the trays are either refillable, i.e., pipette tips may be reloaded into an empty tray, which may or may not be sterilized between uses, or disposable and replaceable with a filled tray. In either situation, multiple trays may be packaged together in a stack for storage convenience and for efficient reloading of a rack with a new filled tray of pipette tips after the previous tray is emptied of its pipette tips during use. However, the stacking of multiple trays containing pipette tips is not straightforward because the overall length of each pipette tip is often greater than the thickness of the tray. That is, the shafts of the pipette tips extend beyond the bottom of each tray. Simply stacking the trays would cause the distal tip ends of the pipette tips in an upper tray to fall within the lumens of the pipette tips in a lower tray. When an upper tray is then removed from the stack, the pipette tips of the lower tray may be ejected from the lower tray along with the upper tray. This defeats the organizational purposes and convenience of stackable trays.
While in some applications this may not present a problem, the known conventional stacking arrangements are not practical for stacking trays containing filter pipette tips. Filter pipette tips have a structure that is similar to standard pipette tips but further include a semi-porous structure within the lumen of the pipette tip. As a result, the distal tip ends of the filter pipette tips in an upper tray cannot fall within the lumens of the filter pipette tips in a lower tray without interfering and/or damaging the semi-porous structure and/or the pipette tip. Because known alternative arrangements for stacking pipette tip trays have not provided satisfactory solutions for filter pipette tips, i.e., stacking is neither efficient with respect to storage capability nor conducive to the laboratory environment where technicians often wear gloves with diminished dexterity or handling by laboratory robotics, there remains a need for a pipette tip tray that is capable of supporting pipette tips, particularly filter pipette tips, and that is stackable in a simple but efficient manner for use with a pipette tip rack.
The present invention overcomes the foregoing problems and other shortcomings, drawbacks, and challenges of stacking conventional pipette tip trays for use with a storage container or rack. While the invention will be described in connection with certain embodiments, it will be understood that the invention is not limited to these embodiments. To the contrary, this invention includes all alternatives, modifications, and equivalents as may be included within the spirit and scope of the present invention.
In one illustrative embodiment, the present invention is directed to a stackable pipette tip tray that includes a deck with first and second opposing longitudinal side edges. A plurality of shaft apertures is arranged into a plurality of longitudinal rows on the deck. Each of the shaft apertures has a first size or shape that is configured to receive a shaft of a pipette tip. The deck also includes a plurality of tip apertures that is also arranged into a plurality of longitudinal rows. At least one of the longitudinal rows of tip apertures is located between an adjacent pair of longitudinal rows of shaft apertures. Each of the plurality of tip apertures has a second size or shape that is different from the first size or shape of the shaft apertures and is configured to receive a distal tip end of a pipette tip when one tray of pipette tips is stacked above another tray of pipette tips. The plurality of longitudinal rows of shaft apertures are arranged such that an outer one of the plurality of longitudinal rows of shaft apertures adjacent to a first side edge of the deck is positioned closer to the first side edge than an outer one of the plurality of longitudinal rows of shaft apertures adjacent to a second side edge of the deck is positioned relative to the second side edge.
Another illustrative embodiment of the invention is directed to a stack of at least first and second pipette tip trays. Each of the first and second pipette tip trays includes a deck with first and second opposing longitudinal side edges. A plurality of shaft apertures is arranged into a plurality of longitudinal rows on each respective deck. Each of the shaft apertures has a first size or shape configured to receive a shaft of a pipette tip. Each respective deck also includes a plurality of tip apertures, each having a second size or shape that is different from the first size or shape of the shaft apertures and is configured to receive a distal tip end of a pipette tip when one tray of pipette tips is stacked above another tray of pipette tips and arranged into a plurality of longitudinal rows of tip apertures. The stack is configured such that the first pipette tip tray is positioned above, and is rotated relative to, the second pipette tip tray. The first side edge of the first pipette tray is vertically aligned with the second side edge of the second pipette tip tray, and the second side edge of the first pipette tray is vertically aligned with the first side edge of the second pipette tip tray. Furthermore, the plurality of shaft apertures of the first pipette tip tray is vertically aligned with the plurality of tip apertures of the second pipette tip tray.
Yet another illustrative embodiment of the invention is directed to a stack of at least first and second pipette tip trays. Each of the first and second pipette tip trays includes a deck with first and second opposing longitudinal side edges. A plurality of shaft apertures is arranged into a plurality of longitudinal rows on each respective deck with each of the plurality of shaft apertures having a first size or shape that is configured to receive a shaft of a pipette tip. Each respective deck also includes a plurality of tip apertures, arranged into a plurality of longitudinal rows, and each tip aperture having a second size or shape that is different from the first size or shape of the shaft apertures and is configured to receive a distal tip end of a pipette tip when one tray of pipette tips is stacked above another tray of pipette tips. At least one longitudinal row of tip apertures is located between an adjacent pair of longitudinal rows of shaft apertures. The plurality of longitudinal rows of shaft apertures on each respective deck are arranged such that an outer one of the plurality of longitudinal rows of shaft apertures adjacent to a first side edge of the respective deck is positioned closer to the first side edge than an outer one of the plurality of longitudinal row of shaft apertures adjacent to a second side edge of the respective deck is positioned relative to the second side edge. The stack is further configured such that the first pipette tip tray is positioned above, and is rotated relative to, the second pipette tip tray. The first side edge of the first pipette tray is vertically aligned with the second side edge of the second pipette tip tray, and the second side edge of the first pipette tray is vertically aligned with the first side edge of the second pipette tip tray.
In another illustrative embodiment, the invention is directed to a method of stacking at least first and second pipette tip trays. Each of the first and second pipette tip trays includes a deck with first and second side opposing lateral side edges. A plurality of shaft apertures is arranged on each respective deck into a plurality of longitudinal rows and each shaft aperture has a first size or shape that is configured to receive shafts of a plurality of pipette tips. A plurality of tip apertures is arranged into a plurality of longitudinal rows on each respective deck. Each of the plurality of tip apertures has a second size or shape that is different from the first size or shape of the shaft apertures and is configured to receive a distal tip end of a pipette tip when one tray of pipette tips is stacked above another tray of pipette tips. The method includes positioning a first pipette tip tray above a second pipette tip tray. The first pipette tip tray is rotated relative to the second pipette tip tray so that the first side edge of the first pipette tip tray vertically aligns with the second side edge of the second pipette tip tray, and the second side edge of the first pipette tip tray vertically aligns with the first side edge of the second pipette tip tray. The first and second pipette tip trays are advanced together such that the distal tip ends of the plurality of pipette tips residing within the plurality of shaft apertures of the first pipette tip tray are received by the plurality of tip apertures of the second pipette tip tray.
The above and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
Turning now to the figures, and particularly to
The shaft apertures 24 are arranged into a plurality of rows along the longitudinal dimension and such that the outer row of shaft apertures 24 that is adjacent to a first longitudinal side edge 28 of the deck 14 is positioned closer to the first longitudinal side edge 28 than the outer row of shaft apertures 24 adjacent the second longitudinal side edge 30 of the deck 14 is positioned relative to the second longitudinal side edge 30. Said another way, and referring to
One of ordinary skill in the art will readily appreciate that the number of shaft apertures 24 comprising each longitudinal row is not limited to the 12 shaft apertures of the illustrated embodiment in
A second set of apertures, having a second size or shape that is different from the first size or shape of the shaft apertures 24 and configured to receive the distal tip end 32 (
In one embodiment, the shaft apertures 24 and the tip apertures 34 are both circular, with the tip apertures 34 having a smaller diameter than the diameters of the shaft apertures 24. Alternatively, the tip apertures 34 may have a different shape or configuration as compared to the shape or configuration of the shaft apertures 24. For example, and by way of illustration only, the shaft apertures 24 may be circular in shape while the tip apertures 34 may be formed in the shape of a diamond, triangle, oval, cross or any other suitable different shape for receiving the distal tip ends 32 of the pipette tips 22.
As shown in
While the number of tip apertures 34 comprising the longitudinal rows may vary, there is particular benefit to having the same number of tip apertures 34 comprising each row as the number of shaft apertures 24 comprising those longitudinal rows.
It will be readily appreciated that the shaft apertures 24 and the tip apertures 34 may also align into respective columns (illustrated herein as C1 to C12 and c1 to c12, respectively), wherein each column Cn, cn extends along the lateral dimension. Thus, the same relationship between the lateral edges of the deck 14 to adjacent lateral columns Cn, cn may exist for both the shaft apertures 24 and the tip apertures 34. That is, the column C1 of shaft apertures 24 adjacent a first lateral outer edge 40 of the deck 14 is positioned closer to the first lateral outer edge 40 than the column C12 of shaft apertures 24 adjacent to a second lateral edge 42 of the deck 14 is positioned relative to the second lateral edge 42. Because columns cn of tip apertures 34 are spaced between adjacent pairs of columns Cn of shaft apertures 24, the opposite would be true for columns cn of tip apertures 34, e.g., the column c1 of tip apertures 34 adjacent the first lateral outer edge 40 of the deck 14 is positioned farther from the first lateral outer edge 40 than the column c12 of tip apertures 34 adjacent to the second lateral edge 42 of the deck 14 is positioned relative to the second lateral edge 42. Accordingly, the shaft apertures 24 are rotationally symmetric with the tip apertures 34 about a centrally-disposed axis 46 that extends orthogonal from the deck 10. The rotational symmetry is described in greater detail below with reference to the method of stacking trays.
The tray 10 may be molded as a unitary structure from a suitable polymeric material. The shaft apertures 24 are sized and shaped to accommodate a particular size pipette tip 22 (
Various ancillary features may be included in the molded unitary tray structure, including, for example, combinations of locking tabs, handles, and supports. In the illustrative embodiment, the tray 10 includes two handles 52, one on each of the lateral outer edges 40, 42 of the deck 14, that extend upwardly from the deck 14 to provide a contact point for handling the tray 10 without directly handling the pipette tips 22 (
In
Turning now to
Before stacking, the top tray 10b is rotated 180° about the centrally-disposed orthogonal axis 46 with respect to the bottom tray 10a, as shown in
In the stacked configuration shown in
With reference now to
The snap tab 58 of the hinged handles 52 of a first tray 10a are received by a recess 73 within the inner edge of the base portion 70 to, at least temporarily, retain the first tray 10a within the container 60 by a retention tab 71. To remove the first tray 10a, the hinged handles are inwardly biasing such that the snap tabs 58 are released from the recesses 73 and biased over the retention tab 71. The first tray 10a is then lifted upwardly by the same handles 52. It will be appreciated that in some embodiments the hinged handles 52 may be of sufficient height as to sit flush with a top edge of the container 60 for access and/or clear the height of the hubs 48 of the pipette tips 22.
As shown in
It will be readily appreciated that each tray 10a-10e within the stack is rotated about the centrally-disposed orthogonal axis 46 with respect to the tray 10a-10d immediately above and/or below the respective tray such that the distal tip ends 32 align with the tip apertures 34 of the tray 10a-10d immediately below the respective tray. Furthermore, the end-walls and sidewalls 12 of all trays 10a-10e within the stack are in vertical, planar alignment, i.e., the end-walls and sidewalls 12 lie in respective common vertical planes.
To dispense the bottom-most tray 10a into the container 60, the user presses downwardly on the push plate 76 of the sleeve 74 to advance the push plate 76 into the sleeve 74 and to contact the top-most tray 10e. Continued downward pressure on the push plate 76 transmits the force through the stack of trays 10a-10e to the bottom-most tray 10a. With sufficient force transferred, the bottom-most tray 10a overcomes the frictional fit retaining the bottom-most tray 10a within the sleeve 74, is ejected from the sleeve 74, and is received into the container 60. Still further pressure causes the snap tab 58 of each hinged handle 52 to bias over the retention tab 71 and then automatically bias outwardly to be received by the respective recess 73. The remaining trays 10b-10e remain within the sleeve 74 are indexed or shifted downward by one position and remain in this position until the tray 10a is empty and a new tray is required.
However, the height of the sidewalls 82 of the tray 80 is greater than the length of the sidewalls 12 of the tray 10 (
It will be readily appreciated that the rows of shaft apertures 110 and the tip apertures 114 are discontinuous in the present embodiment, i.e., that the distance between successive apertures 110, 114 within their respective row is not equal, or constant, throughout the row. Yet, the arrangement of the shaft apertures 110 maintains a rotational symmetry about a centrally-disposed orthogonal axis 126 with the tip apertures 114. Accordingly, various arrangements and patterns of the shaft and tip apertures 110, 114 are possible and should not be limited to the specific embodiments illustrated herein.
Furthermore, it will be readily appreciated that the hinged handles 120 of the tray 104 are longer than the handles 52, 98 of the trays 10, 80 of
While the present invention has been illustrated by a description of various embodiments, and while these embodiments have been described in some detail, they are not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The various features of the invention may be used alone or in any combination depending on the needs and preferences of the user. This has been a description of the present invention, along with methods of practicing the present invention as currently known. However, the invention itself should only be defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
D246466 | Attree et al. | Nov 1977 | S |
4087248 | Miles | May 1978 | A |
D276071 | Malinoff | Oct 1984 | S |
D302207 | Matkovich | Jul 1989 | S |
5392914 | Lemieux et al. | Feb 1995 | A |
D359126 | Hovatter | Jun 1995 | S |
5441702 | Lemieux et al. | Aug 1995 | A |
5612000 | Lemieux | Mar 1997 | A |
5642816 | Kelly et al. | Jul 1997 | A |
5779984 | Kelly et al. | Jul 1998 | A |
D414271 | Mendoza | Sep 1999 | S |
D420142 | Ballin et al. | Feb 2000 | S |
D420743 | Monks | Feb 2000 | S |
6019225 | Kalmakis et al. | Feb 2000 | A |
6164449 | Lahti | Dec 2000 | A |
6286678 | Petrek | Sep 2001 | B1 |
6405870 | Lahti et al. | Jun 2002 | B1 |
D461554 | Lafond et al. | Aug 2002 | S |
D463863 | Carlson et al. | Oct 2002 | S |
D464734 | Berna et al. | Oct 2002 | S |
D466219 | Wynschenk et al. | Nov 2002 | S |
D469544 | Lafond et al. | Jan 2003 | S |
6514466 | Labriola et al. | Feb 2003 | B2 |
D492792 | Kokaisel et al. | Jul 2004 | S |
D533948 | Schaub et al. | Dec 2006 | S |
D556338 | Coulling et al. | Nov 2007 | S |
D556339 | Coulling et al. | Nov 2007 | S |
D562463 | Berndt et al. | Feb 2008 | S |
D574505 | Muller-Cohn et al. | Aug 2008 | S |
D574506 | Monks | Aug 2008 | S |
D576208 | Quercetti | Sep 2008 | S |
D598128 | Pihl et al. | Aug 2009 | S |
D601713 | Lohn et al. | Oct 2009 | S |
D601714 | Lohn et al. | Oct 2009 | S |
D608013 | Coulling et al. | Jan 2010 | S |
D622860 | Karpiloff | Aug 2010 | S |
D632404 | Karpiloff | Feb 2011 | S |
D632803 | Motadel et al. | Feb 2011 | S |
D638138 | Wong | May 2011 | S |
D639447 | Karpiloff | Jun 2011 | S |
20080053940 | Whalen et al. | Mar 2008 | A1 |
20110300620 | Belz et al. | Dec 2011 | A1 |
Entry |
---|
European Patent Office, European Search Report, Application No. 12163587, Jul. 16, 2012 (4 pages). |
Quality Scientific Plastics, Product Catalog, QSP Pipette Tips & Tubes, Features and Benefits and Packaging Options (8 pages). |
Number | Date | Country | |
---|---|---|---|
20120257953 A1 | Oct 2012 | US |