The present invention relates to pistols generally and, more particularly, to a method and/or apparatus for implementing a pistol with an off-axis slide.
Conventional pistols have a barrel locked to a slide that accommodates a recoil when the gun is fired. The slide is typically aligned parallel to an axis of the barrel. During recoil, the movement of the slide causes the pistol to rotate muzzle-upward in the hands of the shooter. A mechanism to minimize the rotation is desirable.
The present invention generally concerns an apparatus comprising a frame, a slide assembly and a barrel. The slide assembly may be slidably mounted to the frame along a sliding plane. The barrel may be disposed in the slide assembly. The barrel generally has a bore shaped to accept an ammunition round. The bore may define a bore axis intersecting the sliding plane such that when the ammunition round is fired the slide assembly recoils both backward and upward relative to the frame.
The objects, features and advantages of the present invention include providing a method and/or apparatus for implementing a pistol with an off-axis slide that may (i) minimize “overburden” recoil during firing, (ii) relocate a barrel bore lower in relation to the user's thumb than in conventional designs, (iii) provide sear-less operation, (iv) provide an aligned-triangle sight, (v) provide click-adjustable windage and elevation control, (vi) have an ambidextrous magazine release and/or (vii) be completely field strippable without special tools.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description and the appended claims and drawings in which:
Embodiments of the present invention generally concern a semiautomatic pistol with lower barrel/center of gravity multifunction parts. Field stripping and grip removal may be accomplished without special tools due to a lack of threaded fasteners. Click adjustable, snag-less field replaceable sights may be included for aiming. The sights generally appear as an opposed triangle-diamond shape sight picture. Various embodiments may include some or all of an adjustable trigger, an ambidextrous magazine release and safeties, a grip with retainers, a sear-less fire control system and a single-piece safety/slide stop detent spring.
Referring to
The bore axis 104 may define a longitudinal axis of the pistol 100. A lateral axis of the pistol 100 may run normal to both the bore axis 104 and a vertical axis. The sliding plane 102 may be nonparallel to the bore axis 104 to minimize pitch rotation during firing. Furthermore, the bore axis 104 may be located above the sliding plane 102 at a muzzle end of the pistol 100, intersect the sliding plane 102 slightly behind a trigger, and be located below said sliding plane 102 at a tail end of the pistol 100. An angle formed between the slide plane 102 and the bore axis 104 may range from approximately 5 degrees to approximately 15 degrees.
Referring to
Action of the pistol 100 generally works on a short recoil operating principle. At a start of the action, the barrel 16 may be locked to the slide 1. The locking may be achieved by the two opposed (locking) lugs 16a on the barrel 16 that contact the mating surfaces 1a of the slide 1. Locking and unlocking is generally controlled by a control lug 16b. The control lug 16b generally extends from the barrel 16 and follows the cam track 2a in the frame 2. The control lug 16b and the cam track 2a may be proportioned to control a recoil, a dwell, an unlock distance and a lock distance as specified for the pressure characteristics of a type of cartridge (ammunition or round) for which the pistol 100 is chambered.
Upon firing a round of ammunition, the slide 1 and the barrel 16 generally recoil to the rear of the pistol 100 as a unit for a set distance (e.g., the dwell distance). During the recoil, the control lug 16b may contact an angled surface of the cam track 2a in the frame 2 causing the barrel 16 to rotate and unlock from the slide 1 (e.g., an “unlock section” of the cam track 2a). With the barrel 16 unlocked from the slide 1, the barrel 16 may be held in the longitudinal direction (e.g., front to back) as the slide 1 continues to recoil to the rear. Although held longitudinally, the barrel 16 (and the corresponding bore axis) generally continue to move away from the frame 2 in the vertical direction. The upward movement may be due to the slide 1 being mounted to the frame 2 on the sliding axis 102 at an angle. The upward movement of the barrel 16 generally continues until the slide 1 has reached a rearward travel limit. At the rearward travel limit, the recoil buffer 18 may be caught between the slide 1 and the opposed lugs 16a (or upper lug). The recoil buffer 18 and the front sight 4 may be formed as a single piece and each may preform a respective function as if separate pieces. The front sight 4 may be held in a longitudinal dovetail by the barrel bushing 17.
A force suitable to (i) retard the recoil of the slide 1, (ii) return the slide 1 to a battery position and (iii) hold the slide 1 in the battery position is generally provided by a guide rod spring 21. The guide rod spring 21 may be interposed between the slide 1 and the frame 2 below and aligned with the barrel 16. The guide rod spring 21 is generally guided and stabilized by a guide rod 19 that passes through a length of the guide rod spring 21. A rear end of the guide rod 19 may be attached to the frame 2 by a slide stop pin 22b (
Referring to
The fire control mechanism generally functions as follows. The hammer 24 may be placed in a cocked position by the slide 1 as the slide 1 is moved rearward during recoil. Movement of the slide 1 forward may chamber a round of ammunition into the barrel 16. The slide 1 may cause the hammer 24 to be rotated counter clockwise (as viewed from the right of the pistol 100). The rotation of the hammer 24 generally compresses the hammer spring 28 until a particular point is reached in the rotation about the hammer pin 25 (e.g., over center) where a force of the hammer spring 28 takes over and continues to rotate the hammer 24 counter clockwise. At the particular point, the hammer strut 26 pivots, forcing the hammer 24 to the cocked position. No sear may exist in the fire control mechanism. The slide 1 may return to battery and the trigger return/grip safety spring 41 may (i) push the transfer bar 23 forward and upward and (ii) rotate the disconnector/ejector 29 (via the transfer bar 23) counter clockwise up (as viewed from the right side) to a fire position as long as the slide 1 is fully in battery. The transfer bar 23 may now be in contact with the transfer bar notch 24a on the hammer 24.
Referring to
The shooter generally holds the grip 3 in a normal manner thereby causing the grip safety 40 to be pressed in by the web of the shooter's hand (not shown). The grip safety 40 generally rotates counter clockwise pivoting on a safety lever pin (or assembly) 42a of the right-hand safety lever 42, and the safety lever pin 44a thereby moving the projection 40a out of a notch 24b on the hammer 24. The shooter may press either the left-hand safety lever 44 or the right-hand safety lever 42 down. Movement of either safety lever 42 or 44 generally causes the safety dog 43, splined to the safety lever pins 42a and 44a, to disengage the notch 24c at the striking end of the hammer 24. The safety dog 43 disengaging the notch 24c generally permits rotation of the hammer 24 once the trigger 30 is pressed to the rear. Rotation of the hammer 24 may move the transfer bar 23 rearward, in turn rotating the hammer 24 clockwise via contact with the transfer bar notch 24a. Once the hammer 24 rotates to a point where the hammer strut pin 27 goes over center of the hammer pin 25, the hammer 24 generally rotates clockwise under spring power to strike the firing pin 10. Upon being struck, the firing pin 10 generally ignites the ammunition.
The recoil operation may be powered by the firing causing the hammer 24 to be reset to the cocked condition, as previously described. The disconnector/ejector 29 is generally pressed downward by the slide 1 coming into contact with a projection 29a on the disconnector/ejector 29 during the recoil operation. The contact with the slide 1 may rotate the disconnector/ejector 29 clockwise on the safety lever pin 42a causing a free end of the transfer bar 23 to be pressed down. The downward movement of the free end generally causes the transfer bar 23 to rotate counter clockwise on the trigger pin 31. The rotation between the transfer bar 23 and the trigger return/grip safety spring 41 may compress on the safety lever pins 42a and 44a. The above generally allows the hammer 24 to be cocked/re-cocked as previously described without the transfer bar notch 24a colliding with the transfer bar 23.
As the trigger 30 is pressed rearward, as previously described, the trigger return lever 37 may rotate on the trigger pin 31. The rotating the trigger return lever 37 generally compresses the trigger return spring 36 via the trigger return plunger 32 to store additional trigger return force. The trigger return adjustment screw 34 at the top may be used to adjust a return distance contacting a recess in the grip 3 or frame 2. Flats on the sides of the trigger return adjustment screw 34 generally nest against the trigger return spring 36 thus preventing unwanted incidental rotation of the trigger return adjustment screw 34. The trigger over travel adjustment screw 33 at the bottom of the trigger 30 may be used to set a rearward limit of the trigger 30. The trigger over travel adjustment screw 33 may limit an amount of rotation allowed to the trigger return lever 37 before the trigger return lever 37 is contacted (i) to the rear by the left-hand magazine release button 39 and (ii) to the front by the trigger over travel adjustment screw 33.
Referring to
The magazine release mechanism is generally located at the lower rear of a trigger guard. The magazine release mechanism may include two pieces (e.g., the left-hand magazine release button 39 and the right-hand magazine release button 38) in two lateral holes on opposite sides in the frame 2 forming a common hole through the frame 2. The left-hand magazine release button 39 generally includes the flat 39c and the flat portion 39b. The flat portion 39b may pivotally engage a notch 45b in the magazine tube 45. The flat 39c generally contacts the trigger return lever 37 so that the left-hand magazine release button 39 may be rotated counter clockwise in the corresponding lateral hole, as viewed from the right of the pistol 100, by the trigger return lever 37 to engage the notch 45b in the magazine tube 45. The trigger return lever 37 may also prevent the left-hand magazine release button 39 from drifting out of the corresponding lateral hole in the frame 2 on the left side of the pistol 100.
The left-hand magazine release button 39 may have an angled surface 39a that contacts a corresponding angled surface 38a on the right-hand magazine release button 38. A cylindrical projection 39d on the end of the left-hand magazine release button 39 generally goes into the hole 38b in the right-hand magazine release button 38. The right-hand magazine release button 38 may have an eccentric portion 38c that fits into an eccentric recess in the frame 2 to prevent rotation of the right-hand magazine release button 38.
Pushing inboard on the magazine release buttons 38 and/or 39 generally causes the angled surfaces 38a and 39a to engage each other. The engagement may cause a rotation of the left-hand magazine release button 39 clockwise, as viewed from the right of the pistol 100. The rotation generally disengages the flat portion 39b of the left-hand magazine release button 39 from the notch 45b of the magazine tube 45. Releasing the inboard pressure on both magazine release buttons 38 and 39 generally allows the trigger return lever 37 to rotate the left-hand magazine release button 39 counter clockwise, as viewed from the right of the pistol 100. Releasing the inboard pressure also allows the mating angled surfaces 38a and 39a to force each release button 38 and 39 outboard in the lateral holes.
Referring to
The sight mechanism generally include the front sight 4 and the rear sight tail 6. The front sight 4 may be a fixed front sight. The front sight 4 may have a generally elongated pyramidal shape with a peak at the 12 o'clock position. The rear sight tail 6 may be a windage adjustable and an elevation adjustable sight assembly mounted on the slide 1. The rear sight insert 7 may appear as a triangle with a point at each of (i) the 3 o'clock position, (ii) the 6 o'clock position and (iii) the 9 o'clock position. The sight 4 and the sight insert 7 may be sized to appear similar in size (e.g., width and height) when viewed at arms length. Alignment of the pistol 100 is generally indicated when the two triangles appear as a single diamond 7a.
The front sight 4 generally appears as a triangular cross section piece set in a dovetail slot cut longitudinally into the top of the slide 1. The front sight 4 is retained in the dovetail slot by a projection on the barrel bushing 17 when the barrel bushing 17 is rotated into place on the slide 1.
The rear sight assembly generally includes the rear sight insert 7 in the rear sight tail 6, the rear sight base 5, the adjustment screws 8 and 9 and the rear sight plunger 14. The rear sight base 5 may be set in a longitudinal slot in the slide 1 with the cylindrical projection 5b on the rear sight base 5 in a vertical hole at the front end of the rear sight slot. The spring loaded rear sight plunger 14 (which shares the extractor spring 13 with the extractor plunger 15) generally puts pressure on the rear sight base forcing the rear sight base 5 down (e.g., rotating counter clockwise viewed from the right) about the cylindrical projection 5b. The extractor 12 may attach the rear sight assembly to the slide 1.
The rear sight tail 6 with the rear sight insert 7 generally sits in the same slot as the rear sight base 5 and pivots on a cylindrical pin 5b extending down from the rear of the rear sight base 5. The pin 5b, which is roughly vertical in normal use, generally allows the rear sight tail 6 to pivot left and right (e.g., yaw) as view from the top rear of the pistol 100. The two adjustment screws 9 and 8 may be disposed in holes in the bottom of the slide 1. The holes may be perpendicular to the bottom of the slide 1 and parallel to each other. The screws 9 and 8 generally have angled flats that contact the bottom of the rear sight tail 6 and move the rear sight tail 6 left/right and up/down as the screws 9 and 8 are turned up and down in the holes. The flats may provide incremental adjustment clicks at angles relative to the screw's axis along with the sight tail 6 and base lever length to provide similar windage increments and elevation increments. A spring pressure acting opposite to the screws 9 and 8 generally prevent loss of the settings. Turning both screws 9 and 8 in the same direction (e.g., clockwise or counter clockwise) may change the elevation setting (e.g., bullet vertical impact). Turning the screws 9 and 8 opposite each other may move the rear sight tail 6 left/right thereby shifting the bullet impact left/right.
Referring to
Normally the two position slide stop 22 and the two position safety levers 42 and 44 may be maintained in the user selected position by the double ended detent plunger spring detent plunger arrangement. A standard detent arrangement generally has the detent parts in a tube attached to the frame. An improvement arrangement of the pistol 100 generally has the one-piece safety detent spring 35 in the shape of an omega with each of the circular ends acting in a linear manner opposite the other. The one-piece safety detent spring 35 may be held in place laterally between the grip 3 and the frame 2. The one-piece safety detent spring 35 may be held vertically by the recessed grove 3e in the grip 3 that holds each circular end of the one-piece safety detent spring 35 in position in contact with the left-hand safety lever 44 and the slide stop 22.
Referring again to
Referring to
Some embodiments of the present invention generally include a relocation of the barrel bore axis “lower” in relation to the user's thumb and index finger web. For example, the barrel bore axis 104 may be approximately ⅛ inches above the web of the shooter's hand. The lowering generally improves handling and reduced “overburden” recoil that may be caused by a relationship between the muzzle and the web of the shooter's hand. Reducing the overburden may reduce the implementation of expensive and power robbing compensators. Some embodiments may also provide sear-less operation providing ease of manufacture, simplified trigger pull adjustment, smooth operation, and short trigger travel. The “aligned triangle” sight design may be used for aiming. The sight mechanism may be click-adjustable for windage and elevation by means of two locking, hidden screws. The aligned-triangle sight may be implemented with field replaceable inserts. The sight mechanism may also provide rapid target acquisition, precision alignment, unobstructed target view, is generally low profile and snag-less. Some embodiments may include an improved ambidextrous magazine release that enables the shooter to release the magazine from either side using either hand. Furthermore, the pistol 100 may be completely field strippable without the use of special tools. The pistol 100 may provide a short recoil operated locked breach, a bushed barrel, an out of battery safety, an ambidextrous manual safety, and may be completely compression spring operated.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/005,151, filed Dec. 3, 2007, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2308629 | Rosenberg | Jan 1943 | A |
3492748 | Swenson | Feb 1970 | A |
3815270 | Pachmayr | Jun 1974 | A |
3983654 | Vironda | Oct 1976 | A |
4043066 | Pachmayr et al. | Aug 1977 | A |
4048901 | Ghisoni | Sep 1977 | A |
4651456 | Ghisoni | Mar 1987 | A |
4754689 | Grehl | Jul 1988 | A |
4835892 | Ruger et al. | Jun 1989 | A |
5426880 | Ruger | Jun 1995 | A |
5924230 | Hoke, Jr. | Jul 1999 | A |
6112636 | Besselink | Sep 2000 | A |
6257116 | Moczijdlower et al. | Jul 2001 | B1 |
6360471 | Stein | Mar 2002 | B1 |
D517638 | Bilgeri | Mar 2006 | S |
Number | Date | Country | |
---|---|---|---|
61005151 | Dec 2007 | US |