The invention relates to a piston cam engine and particularly to an opposite piston cam engine, used in different field of the mechanical engineering, as internal-combustion engines, compressors, pumps etc. Engines could be integrated in various land, water and air vehicles, as well as in stationary units.
The most important and perspective application of opposite piston mechanisms converting the reciprocal linear piston motion into rotation towards output shafts and vice versa is in the field of internal combustion engines.
There are known from DE 3347859, RU 2069273, RU 2073092, RU 2089733, RU 2118472 etc., opposite piston cam engines comprising a housing, a drive or driven shaft, a cylindrical tubular 3D cam having a cam groove on the inner cylindrical surface, opposite coaxial cylinders mounted in the housing, as well as pistons moving in the cylinders and followers having end pieces for moving in the cam groove connected to the pistons. The opposite pistons of these known cam engines are fixed each other and have synchronized motion. Although these engines have a simplified construction and possibility for reduction of contact pressure that occurs in contact areas of the cam groove and end pieces of the followers, they have not elements moving in reciprocal of the pistons direction to create balance inertial force.
There are also known from SU 1525284 and SU 1705600 another opposite piston cam engines including a housing, a drive or driven shaft, a cylindrical tubular 3D cam having a cam groove on the inner cylindrical surface, opposite coaxial cylinders mounted in the housing, as well as pistons moving in the cylinders connected with followers having end pieces for moving in the cam groove. Each piston of these engines has own follower having arm with end piece for independent movement in the cam groove. Thus it is possible for the pistons to move in opposite directions and their inertial forces to be neutralized. The end pieces for movement in the cam groove are rollers bearing by the free ends of the arms. The rectilinear movement of the pistons is ensured by other rollers mounted also on the free ends of the arms of the follower, but moving in a guide groove formed in the housing. It is a main disadvantage of these engines that the linear guidance of the followers is performed by guide groove which provokes arising of micro strokes in between the contact surfaces of the rollers and the groove when the direction of piston motion has changed. Besides in order to ensure precise guidance of the pistons, the cylinders and the pistons must be manufactured with a high precision. 3D cam is monolithic and it is difficult to produce the internal cam groove with high precision. All above complicates the technology and increases the manufacturing costs.
The problem solved by the present invention is to provide a piston cam engine which is balanced and reliable, as well as noise and vibrations are decreased.
This and other problems are solved by a piston cam engine comprising a housing, a drive or driven shaft, a cylindrical tubular 3D cam having a cam groove on the inner cylindrical surface. The 3D cam is composed. It includes two coaxial bushes, each one having corrugated cam section from its one side and flange from its other side, besides the bushes are positioned against each other with its corrugated ends in such a way that the convexities of one of the cam sections are positioned against concavities of the other at a distance from each other. The cam further comprises spacer between the flanges of the bushes, so as to form the cam groove having a constant section. There is a possibility the groove to be controlled for ensuring a permanent contact between the rollers and the corresponding cam section. Thus an endless corrugated cam groove on the inner cylindrical surface is performed, having constant cross section. The engine further comprises at least one cylinder, as well as at least one piston moving in the cylinder and at least one inertial balancer of the piston controlled by the cam. The engine further comprises at least two guides for linear reciprocal motion of each piston and each balancer, followers having at least two arms connected to the pistons and to the balancers. The guides according to the invention are guide columns, parallel and equally placed compared to the axes of the cam. Each one of the followers is equally placed compared to the axes of power transmission. On the ends of the arms rollers are mounted for moving in the cam groove. In the engine according to the invention the micro impacts between the contact surfaces of the rollers and the cam groove are avoided when the direction of piston motion has changed. The manufacturing costs decreases since it is not necessary for providing of high precision of guidance a high precision of manufacturing of pistons and cylinders.
In one embodiment of the invention the guides are fixed to the housing, and the followers have a possibility to move axially on the guides. In one alternative embodiment the reverse is true, namely the followers are fixed to the housing, and the guides have the possibility to move axially on the guides.
In another embodiment of the engine according to the present invention the cross section of each cam section is a line arranged at angle of degrees different from 90° in towards the axes of the cam which arrangement ensuring a reaction having radial component from the cam section when contacting the roller, and the radial component direction is directed to the axes of the cam. This radial component leads to discharge of the arms of followers, because it eliminates a part of the moment caused by the axial component of the same total reaction.
In yet another embodiment of the invention the end of each arm is formed as a main bearing journal which free end forms additional bearing journal eccentric disposed compared to the main bearing journal. The roller is mounted on the main bearing journal and an additional roller is mounted on the additional bearing journal, so as the main roller and the additional roller contact with the opposite cam sections of the cam. The additional rollers ensure contact with the opposite cam of the cam section contacting with the main rollers. Thus it prevents the contact between each follower and the cam from interruption when the direction of the loading force has changed. Between the additional bearing journal and the additional roller has elastic element ensuring self-aligning toward the cam sections. In one alternative embodiment of the invention the axes of each arm is a straight line coinciding with the direction of the contact reaction in top dead center of the piston. The end of each arm is formed as a fork, and on fork arms a main bearing journal is immovably mounted, carrying the main roller. The main bearing journal is tube-like shaped, in which hole an additional bearing journal is positioned having axes parallel to the arm, on which additional journal an additional roller is mounted. The additional bearing journal has a possibility for movement on the axes of the main bearing journal, as the main roller and the additional roller each contacts with the one of opposite cam sections of the cam.
In one another embodiment the piston cam engine according to the invention further comprises at least one cylinder head including variable means for delivery and means for discharge of working fluid. Thus the engine may be build in and to operate as compressor or pump.
In one next embodiment of the invention the corrugated cam section is made so that its curve of law of motion of the followers in function of the angle of cam rotation is formed by consecutively alternating ascending and descending sectors in which connection equal number of convexities and concavities are obtained, which total number is equal to or multiple to the sum of the number of arms of the followers. At that the curve is continuous at least up to its second derivative within one complete cam rotation of 360°. Besides the curve is symmetrical for every two adjacent ascending and descending sectors toward a line passing trough its point of junction and the line is perpendicular to the tangent to the curve in this point, as well as the curve is symmetrical toward the middle point of a given ascending or descending sector. This embodiment of the cam curve ensures the velocities and accelerations of the followers at the end of each ascending and descending sector to be equal of their velocities and accelerations in the beginning of the next section, which in its turn leads to achieve a graded junction when the followers change their direction of movement. In one preferred embodiment each ascending or descending sector of the curve has by one maximal and by one minimal value of its second derivative which are displaced from the end points of the given sector. In one more preferred embodiment the values of the second derivative of the curve are equal to zero in the points of connection of each two adjacent sectors. In one most preferred embodiment equal rectilinear sectors are included in the zone of points of connection of the curve. Thus the accelerations are equal by size and adverse by direction when comparing the accelerations of given follower at any two of its positions which are equal remote from the middle point of any ascending or descending sector. Such curve provides a simultaneous contact of all main bearing journals of followers with the respective cam profiles. Thus the piston cam engine according to the invention is completely balance at each working stage.
In one another embodiment the piston cam engine according to the invention comprises more than one drive or driven shaft, each one rotary moved by the cam.
In one next embodiment the drive or driven shaft transmits or accepts motion from the cam by means of chain drive.
The invention further provides a compressor or pump including at least one piston cam engine according to the embodiments described above.
The present invention also provides a motor including the piston cam engine according to the embodiments described above.
In one embodiment the motor is an internal-combustion engine, which valve-timing mechanism includes at least one kinematic chain having one discharge or one inlet cam on its one end and valve on its other end, both connected by a rocker with roller. The roller contacts to the discharge or inlet cam. The discharge or inlet cam is a flat 2D cam fixed coaxially to the main cam of the piston cam engine. The rocker is connected by a hinge to the housing of the engine.
In yet another embodiment the motor is a four-stroke two-piston engine, which valve-timing mechanism consists of four kinematic chains, two of which are discharge and the other two are inlet chains, which kinematic chains are located by two different discharge and inlet chains of each side of the main cam.
In another embodiment the motor is four-stroke one-piston engine, which valve-timing mechanism consists of two kinematic chains, one of which is discharge chain and the other is inlet chain, which kinematic chains are located on the side of the cylinder.
Another embodiment provides a two-stroke two-piston engine, which valve-timing mechanism consists of two kinematic discharge chains located by one of each side of the main cam, and the power supplying with fresh working substance is from windows of each cylinder.
The another embodiment of the invention further provides a motor which is a two-stroke one-piston engine, having valve-timing mechanism consisting of one kinematic discharge chain.
The next embodiment discloses a motor comprising one operating cylinder working at four- or two-stroke process, and one opposite cylinder which is cylinder of compressor or pump. In one preferred embodiment the opposite cylinder is a cylinder of compressor, and at least a part of the compressed air from the compressor cylinder feeds the operating cylinder through a pneumatic accumulator where the air is stored and/or fuel-air mixture is prepared for the next working cycle of the operating cylinder.
In yet another embodiment the motor comprises more than one piston cam engine, each of which represents separate module, and the modules are kinematic connected each other.
a, 2b and 2c are three-dimensional views of one two-arm and one three-arm follower and a variant of follower with centering journal which meet the requirements for followers of piston cam engine according to the invention;
a, 3b, 3c and 3d are respectively views, partial section and auxiliary view of a composite follower;
a and 4b are two variants for guiding of followers of two-piston cam engine according to the invention;
a and 8b show respectively longitudinal and cross section of piston engine with modified followers and curvilinear cam section;
a, 13b and 13c show respectively one-piston compressor, one-piston four-stroke engine and one-piston two-stroke engine according to the invention;
a and 14b show respectively four- and two-stroke engine combined with a compressor;
a and 15b show respectively two laws of followers movement and their second derivatives that are continuous and which extreme values do not coincide with the end points of their sectors;
a and 16b show a law of follower's movement and its second derivative with introduced rectilinear horizontal sectors in each point of the curve corresponding to pistons dead position;
a and 17b show thermodynamic cycle respectively of a traditional four-stroke diesel engine and of a cam four-stroke diesel engine according to the invention;
According to the invention different two- and one-piston engines could be realized that may afterwards be build in compressors, pumps, internal combustion engines performing different working cycles, as well as internal combustion engines combined with a pump or compressor.
Axonometric views of followers, namely having two and three arms 26 and an example of follower with a centering journal are shown on
a, 3b, 3c and 3d show respectively views, partial section and auxiliary view of a composite follower 1 having four separate arms 26 twos connected. In the one end of each arm 26 there is a channel with rectangular cross section in which a connector 28 by means of fitting pins 27 is adjusted to the arms 26. The two sides of the channel embrace the front parts of the connector 28. The fitting pins 27 are in parallel to the direction of loading force of the follower 1. Each arm 26 is connected to the connector 28 with two adjusting screws 29 and one retainer screw 30. The fixing screw passes through a reniforme opening 31 of the arm 26 and is screwed in a screw hole of connector 28. This example embodiment allows independent adjustment of the arm 26 position.
a and 4b shows two example embodiments of follower guiding of the piston engine according to the invention. In the first embodiment shown on
The embodiment shown on
Further opportunity for increasing the loading capacity of followers 1 is shown on
The adapting of the piston cam engine according to the invention to a four-stroke internal combustion engine is shown on
a, 13b and 13c show respectively a single-piston cam compressor, a single-piston four-stroke cam engine and a single-piston two-stroke cam engine are shown according to the invention. All of them are made on the basic of the piston cam engine shown on
a and 14b show different embodiments of combined two-piston cam engine with a compressor.
The efficiency of cam engines could be increased by improvement the cam law motion, as it is shown on
In the following
through which the ascending and descending sectors of the cam law motion may be presented, where φ is the angle of cam rotation 3, S(φ) is the cam law motion, H is the piston stroke and γ is the angle of cam rotation 3, within which the piston 20 realizes its stroke. For the given example, pistons 20 perform four strokes per one revolution of the cam 3 and four times are immovable keeping constant cylinder volume, each time in the course of δ[deg CrAng]. The relation between γ and δ may be presented by means of the following equation:
4δ+4γ=360°.
The specific forms of the cycloid function for each ascending 101 and descending 102 sector of the law are given in the table below, as well as the introduced rectilinear horizontal sections 112.
Diagrams p-V (pressure-volume) of two diesel engines are shown on
Although the description above contains many specifics, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Thus, the scope of this invention should be determined by the appended claims and their legal equivalents.
Number | Date | Country | Kind |
---|---|---|---|
109312 | Sep 2005 | BG | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/BG2006/000017 | 9/29/2006 | WO | 00 | 1/27/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/036007 | 4/5/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2401466 | Davis et al. | Jun 1946 | A |
3757748 | Arney | Sep 1973 | A |
20020043226 | Gofron | Apr 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20080289606 A1 | Nov 2008 | US |