The invention relates to a piston machine with a device for reducing flow pulsations.
When hydrostatic piston machines are in operation, their design leads to a pulsation of the pressure caused by non-uniform delivery of the employed pressure medium, which spreads out through the line system.
From DE 100 34 857 A1 a pulsation-reducing device is known, which has, opening out into the switchover region of the control level, a pressure compensation line connected to the high-pressure-side kidney-shaped control port by a controlled throttle. The controlled throttle comprises a piston having a control edge, wherein the position of equilibrium of the piston is set by means of a compression spring and, in the opposite direction, by means of a compression force, wherein the compression force is generated by the pressure prevailing in the high-pressure kidney-shaped control port. With this system, compared to conventional control notches, an improved adaptation to the respective operating state of the piston machine may be achieved.
A drawback of the previously described piston machine is that the flow pulsations, which admittedly occur only to a reduced extent but are not entirely avoidable, are transmitted to the control piston, and so the control piston in turn may be excited into oscillation. This has a direct influence on the effectiveness of the pressure compensation that is to be enabled by the variable throttle. A further drawback is that owing to the movement of the control piston, which is unavoidable because of the pulsation of the pressure in the high-pressure kidney-shaped control port, considerable wear occurs at the pulsation-reducing device.
The object of the invention is to provide a piston machine with a pulsation-reducing device that is easy and economical to realize and does not require any additional components or take up additional installation space.
The object is achieved by the piston machine having the features of claim 1.
The piston machine according to the invention has the advantage that producing a pulsation reduction entails only the provision of a pressure compensation line, which is disposed between a working line and an opening disposed in a switchover region of a control level. When arranging the pressure compensation line, it is merely necessary to take into account that the opening-out in the working line is to be provided at a point where the pressure wave advancing in the working line may be tapped in the correct phase sequence. This tapping in the correct phase sequence makes it possible, on the one hand, to achieve a pressure rise in a cylinder chamber of a piston machine being operated as a pump. On the other hand, it is equally possible, by tapping a targeted phase of the pressure wave advancing in the working line, to achieve a pressure reduction in a cylinder during sweeping-over of the switchover region when a piston machine is being operated as a motor. Thus, by simply selecting the point, at which the pressure compensation line opens out in the working line, the effect is achieved whereby for a pump the pressure maximum and for a motor, on the other hand, a pressure minimum is reduced.
The advancing pressure wave in the working line is reduced in amplitude as a result of the tapping in the correct phase sequence, with the result that the structure-borne noise transmission to downstream components and hence, ultimately, their noise radiation is reduced.
Advantageous developments of the piston machine according to the invention are possible by virtue of the measures outlined in the sub-claims.
The piston machine according to the invention is diagrammatically illustrated in the drawings and described in detail below. The drawings show:
The cylindrical bores 3, 4 at a front end of the cylindrical drum 2 each have a cylindrical opening 7, 8, wherein during rotation of the cylindrical drum 2 the cylindrical openings 7, 8 sweep successively over a first kidney-shaped control port 9 and a second kidney-shaped control port 10, wherein the kidney-shaped control ports 9, 10 are disposed in a control level 11, which is connected to the housing of the axial piston machine 1 so as to be locked against rotation. The kidney-shaped control ports 9, 10, which extend along a segment of a circle, are each connected to a working line that is not shown in
At their ends remote from the kidney-shaped control ports 9, 10 the pistons 5, 6 each have an approximately spherical extension 13, 14, the spherical geometry of which corresponds with a recess 15, 16 of a sliding block 17, 18.
In the illustrated embodiment the sliding blocks 17, 18 are supported on a swash plate 25. In order to supply the contact surface between the sliding blocks 17, 18 and the swash plate 25 with lubricant, both the spherical extensions 14, 13 and the sliding blocks 17, 18 have a pressure oil bore 21, 22 and 23, 24 respectively. Thus, from the pressure medium reservoir both the contact points between the sliding blocks 17, 18 and the swash plate 25 and between the spherical heads 13, 14 and the corresponding recesses 15, 16 of the sliding blocks 17, 18 are adequately lubricated.
For operation as an axial piston pump, the cylindrical drum 2 is rotated about its centre line 12, wherein because of the inclination of the swash plate 25 in relation to the centre line 12 the pistons 5, 6 disposed in the cylindrical drum 2 execute a reciprocating motion, wherein they are connected during an intake reciprocating motion to a low-pressure kidney-shaped control port, during a high-pressure reciprocating motion, on the other hand, to a high-pressure kidney-shaped control port.
In the switchover region 30, which is swept over by the cylindrical openings 35.1 to 35.9 during the change from the low-pressure to the high-pressure side, an opening is disposed, which forms a first end 32 of a pressure compensation line 33. The pressure compensation line 33 has a second end 34, which opens into a working line 27. The axial piston machine 1 illustrated in
During operation of an axial piston machine 1, the finite number of pistons 3, 4 and the non-uniform velocity profile during a pump lift lead to irregularities in the flow rate. These irregularities in the flow rate result in a pressure pulsation of the kind illustrated diagrammatically in the working line 27. Starting from the high-pressure kidney-shaped control port 9, a pressure wave advances along the working line 27. A length L of the working line 27 between the high-pressure kidney-shaped control port 9 and the second end 34 of the pressure compensation line 33 is in said case so dimensioned that the advancing pressure wave in the working line 27 at the moment, at which the second end 34 of the pressure compensation line 33 presents a maximum, at which the first end 32 in the switchover region 30 comes into contact with a further cylindrical opening.
In the illustrated embodiment, the cylindrical opening 35.6 is the next to come into overlap with the opening at the first end 32 of the pressure compensation line 33. If at the instant, when the cylindrical opening 35.6 overlaps the opening of the first end 32 of the pressure compensation line 33, at the second end 34 of the pressure compensation line 33 there is a pressure maximum in the working line 27, then a pressure compensation occurs, in which the pressure in the cylindrical bore connected to the cylindrical opening 35.6 is increased via the pressure compensation line 33. Because of the pressure medium flowing into the pressure compensation line 33, the amplitude of the pressure wave advancing in the working line 27 is subsequently reduced. A pressure pulsation reduction is therefore achieved.
In the following, the function is illustrated merely schematically with reference to an example that does not limit the generality.
In the illustrated embodiment having nine bores in the cylindrical drum 2, given the illustrated arrangement of the first end 32 of the pressure compensation line 33, at the instant when the overlap between the opening at the first end 32 of the pressure compensation line 33 and the cylindrical opening 35.6 begins, the ratio of the angles α, β, which the cylindrical openings 35.9 and 35.8 form with the centre line of the working line 27, is 1:4. A pressure maximum in the working line 27 occurs whenever a cylindrical opening 35.1 to 35.9 forms with the centre line of the working line 27 a specific angle, which recurs cyclically in accordance with the number of pistons per revolution. Accordingly, at the illustrated instant the pressure maximum in the working line 27 has advanced from the side of the high-pressure kidney-shaped control port 9 by approximately ¼ of wavelength λ.
This therefore produces, for the illustrated preferred case of nine cylinder bores arranged so as to be uniformly distributed over a cylindrical drum 2, a length L between the high-pressure kidney-shaped control port 9 and the second end 34 of the pressure compensation line 33 that is equal to ¼ λ. The wavelength λ in said case arises from the frequency of the pulsations, which in turn may be determined from the number of cylindrical bores and the rotational speed of the cylindrical drum 2. In order to relieve a residual pressure, a connection channel 39 moreover opens out into the switchover region 31, the second end of said channel opening into the kidney-shaped control port 10.
From the remaining angle of rotation γ between the cylindrical opening 35.5 and the opening at the first end 32 of the pressure compensation line 33 in relation to the intermediate angle δ between two successive cylindrical openings, e.g. 35.2 and 35.3, the minimum distance between the second end 34 of the pressure compensation line 33 and the high-pressure kidney-shaped control port 9 arises in units of the wavelength λ in accordance with previously mentioned definitions. If it is impossible to connect the second end 34 of the pressure compensation line 33 to the point of the working line 27 thus calculated, then a connection point of an identical effect, displaced in each case by λ, is possible.
When determining the length L, account may be taken of the fact that a pressure variation propagating in the working line 27 likewise has a propagation time along the pressure compensation line 33. In said case, an altered phase position has to be taken into account, in that the phase displacement along the pressure compensation line is considered as a change in length of the length L.
Number | Date | Country | Kind |
---|---|---|---|
102 32 983.4 | Jul 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/07422 | 7/9/2003 | WO | 9/27/2005 |