1. Field of the Invention
The present invention relates to a piston for an internal combustion engine, having a lower part and an upper part that are welded together to create a one-piece piston. The lower part has at least a piston skirt, and the upper part has at least a piston crown, a circumferential top land, and a circumferential ring belt provided with ring grooves. The lower and upper parts are welded together and form a circumferential, closed cooling channel between them. A funnel-shaped oil inlet is forged into the lower part to allow for oil to be sprayed into the cooling channel in an efficient manner.
2. The Prior Art
In pistons with closed cooling channels, it is necessary to provide an inlet through which cooling oil is sprayed. This inlet is usually provided through the floor of the cooling channel and communicates with the underside of the piston in the area just outside the pin boss. Oil is sprayed in via a nozzle through this inlet to cool the piston during operation. The spray angle is of great consideration, as better cooling is achieved with a wider angle as the oil enters the cooling channel.
There have been several attempts to construct an oil inlet that maximizes the cooling efficiency of the oil. For example, U.S. Pat. No. 5,730,090 to Kling et al. discloses a piston having an oblong oil inlet and a curved skirt wall that helps direct the oil spray to enter the inlet. U.S. Pat. No. 7,051,684 to Bauer shows a piston having an insert in the cooing channel cover. The insert is shaped so as to be wider on the bottom so it can concentrate the oil entering the cooling channel, and is shaped to distribute the oil efficiently throughout the channel.
WO97/48896 to Nardi discloses a piston having an oil inlet that is wider at the bottom than at the entrance to the cooling channel. The walls of the oil inlet are tapered to deflect the oil to the inside of the cooling channel. The oil inlet is formed as a channel through the piston base portion. While this solution can be effective, the resulting piston suffers from excess weight, as the material required to create the elongated oil inlet extends entirely around the circumference of the piston.
It is therefore an object of the present invention to provide a piston for an internal combustion engine having a closed cooling channel and a funnel shaped oil inlet that is forged into the piston base body, without adding significantly to the weight of the piston.
This object is accomplished by a piston for an internal combustion engine, that is formed from an upper part connected to a lower part. The upper part has a piston crown, a combustion bowl, and a ring belt extending circumferentially around the piston upper part. The lower part contains pin bosses and a piston skirt. A circumferential cooling channel is formed by joining the upper part and lower part and has a floor formed by the lower part. Each of the upper and lower parts has inner and outer circumferential walls that terminate in joining surfaces. The joining surface of the outer circumferential wall of the upper part is joined to the joining surface of the outer circumferential wall of the lower part, and the joining surfaces of the inner circumferential walls of the upper and lower parts are also joined by brazing or welding, and one such example would include friction welding. The closed cooling channel is thus formed between the joined inner and outer circumferential walls.
There is at least one oil inlet formed in one piece with the piston lower part, preferably by forging. The inlet has a lower extremity and an upper extremity that terminates at the floor of the cooling channel. A bore extends through the oil inlet from the lower extremity up though the floor of the cooling channel. The circumference of the bore decreases from the lower extremity to the upper extremity, so the oil inlet forms a funnel shape. The oil inlet is formed on one side by an interior wall of the piston skirt, and on an opposite side by a circumferential collar connected to the piston skirt.
In one embodiment, the oil inlet is located adjacent one of the pin bosses, and the collar is connected one end to the piston skirt and on another end to an interior wall of the respective pin boss.
The funnel shape of the oil inlet maximizes the amount of cooling oil that can enter the cooling channel, as the oil that is sprayed into the inlet is deflected off of the slanted walls and can enter the cooling channel at various angles. For best results, the ratio of the area of the bore at the upper extremity to the area of the bore at the lower extremity is in the range of 1:2 to 1:8.
The bore can be non-circular, i.e., oblong, at the lower extremity and circular or non-circular at the upper extremity. The oblong shape at the lower extremity allows for the use of a split oil jet that emits a non-circular spray. Aligning the jet with the shape of the lower extremity causes the oil inlet to collect the maximum amount of oil possible and feed it to the cooling channel, without excessive splash back.
In one embodiment, the area of the inner wall of the piston skirt that forms the oil inlet has an axial groove therein, which defines one of the sides of the bore.
The collar and thus the oil inlet itself preferably has an axial height of between 5 and 12 mm. But it is appreciated the height of the collar is related to the size of the piston and the available clearance between the piston and the connecting rod. In some forms, the collar height may exceed 20mm to further increase the collection of oil into and through the cooling channel. The collar has an interior wall and an exterior wall joined by a curved bottom. The curved bottom preferably has a radius of curvature of 4-15 mm. In a preferred embodiment, there are two oil inlets, disposed approximately 180° from each other. In this case, one of the inlets is used as an oil outlet, to allow the oil to drain back out of the cooling channel.
Other objects and features of the present invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It is to be understood, however, that the drawings are designed as an illustration only and not as a definition of the limits of the invention.
In the drawings, wherein similar reference characters denote similar elements throughout the several views:
Referring now in detail to the drawings and, in particular,
To allow cooling oil to enter cooling channel 40, at least one oil inlet 50 is provided, which penetrates through a floor of cooling channel 40. Oil inlet 50 has a bore 51 surrounded by a collar 52 that extends between skirt 32 and pin boss 31. Collar 52 is forged in one piece with lower part 30. Bore 51 extends into the inner wall of skirt 32 in area 53. Collar 52 and inner skirt wall 36 form oil inlet 50, which has a funnel shape, as shown in
Collar 52 has an interior wall 54 and an exterior wall 55 joined by a curved bottom 56. Curved bottom 56 preferably has a radius of curvature of 4-15 mm. Interior wall 54 is slanted so as to create the funnel shape of oil inlet 50.
As shown in
By configuring the oil inlet 50 via collar 52, very little additional material is required to configure the funnel-shaped oil inlet. This minimizes the weight of the piston, leading to enhanced performance. Configuring oil inlet 50 as an oblong inlet in the bottom portion maximizes oil capture, especially when using a split oil nozzle. In addition, the forging of the funnel-shaped oil inlet reduces the secondary operations typically required to create a funnel around the inlet bore. For example, the forged inlet may reduce or eliminate the insert along with a press-fit or threading operation to secure the insert into the bore, reducing the manufacturing cost of the piston.
Accordingly, while only a few embodiments of the present invention have been shown and described, it is obvious that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention.