This invention relates to a stroke adjustment mechanism for a piston pump and, more particularly, a stroke adjustment mechanism rotationally mounted about a discharge tube.
Stroke adjustment mechanisms are known to adjust the stroke of a piston pump by limiting the distance a piston may be moved relative to a piston chamber. Known stroke adjustment mechanisms require a separately manufactured element for mounting on the piston chamber and resulting in difficulties in assembly and increased expense.
To at least partially overcome these disadvantages of previously known devices, the present invention provides a piston pump with a piston coaxially slidable in a chamber for dispensing fluid out of a discharge tube which extends normal to the axis about which the piston is slidable in the chamber with a stroke stop member rotatably journalled on the discharge tube for pivoting between different positions in which the stroke stop member limits inward sliding of the piston into the chamber to different extents.
In one aspect, the present invention provides a pump for dispensing fluids from a reservoir comprising:
a piston-chamber forming member having a cylindrical chamber about a central axis, said chamber having a chamber wall, an inner end in fluid communication with the reservoir and an outer open end,
a piston forming element having a piston portion coaxially slidably received in the chamber with an outer portion of the piston forming element extending outwardly from the open end of the chamber,
the outer portion including a hollow discharge tube extending generally radially outwardly from the central axis from an inlet end to a discharge outlet,
the piston portion being generally cylindrical in cross-section with a central axially extending hollow stem having a central passageway with an inner end opening into the chamber and an outer end communicating with the inlet end of the hollow discharge tube,
an axially outwardly directed stroke stop surface fixedly relative to the piston-chamber forming member,
a stroke stop member carried on the discharge tube for engagement with the stroke stop surface to limit inward coaxial sliding of the piston forming element relative the piston-chamber forming member,
the stroke stop member journalled on the discharge tube for pivoting about a radial axis extending radially from the central axis between a first rotational position and a second rotational position,
in the first rotational position the stroke stop member engaging the stroke stop surface to limit inward coaxial sliding of the piston forming element relative the piston-chamber forming member at a first axial location,
in the second rotational position the stroke stop member engaging the stroke stop surface to limit inward coaxial sliding of the piston forming element relative the piston-chamber forming member at a second axial location which is different than the first axial location,
wherein reciprocal sliding of the piston forming element relative the piston-chamber forming member dispensing fluid from the reservoir out the discharge outlet.
Further aspects and advantages of the present invention will become apparent from the following description taken together with the accompanying drawings in which:
The piston chamber forming member 14 includes a cylindrical chamber tube 18 extending downwardly from an open upper end 19 to a lower end 20 about an axis 21 and defining a chamber 26 therein. A dip tube 23 extends downwardly from the lower end 20 of the chamber tube 18. The dip tube 23 extends downwardly to an inlet 25 within the bottle 2. The piston chamber forming member 14 includes a support flange 17 which extends radially outwardly about the open upper end 19 of the chamber tube 18. At a forward end, the support flange 17 is bent to extend upwardly as a front wall 22.
The piston element 12 has a vertical stem portion coaxially received within the cylindrical chamber 26 of the piston chamber forming member 14 thus forming with the chamber tube 18 a piston pump arrangement for dispensing fluid from the chamber 26 outwardly through a discharge tube 27. Reciprocal sliding of the piston element 12 within the piston chamber forming member 14 about a central axis 21 draws fluid in the bottle 2 upwardly through the dip tube 16 into the piston chamber forming member 14 from which it is dispensed out an outlet 33 of the dispensing tube 27 forming part of the piston element 12.
As seen in
A plastic casing or locating member 34 disposed about the tube 27 to provide, amongst other things, engagement surfaces 36 for engagement by the lever 4 such that manual downward pivoting of the lever 4 will urge the piston element 12 downwardly into the piston chamber forming member 14 against the bias of a spring 37. The locating member 34 also provides cylindrically disposed guide surfaces 138 disposed coaxially about the vertical portion 28 of the tube to guide the piston element 12 coaxially about the center axis 21 in the chamber 26. The plastic casing 34 encases the curved portion 29 of the tube 27 and has a forward end 35 disposed about the horizontal portion 30 of the tube 27. Forwardly of the forward end 35 of the casing 34, a stroke stop member 38 is provided about the horizontal portion 30 of the tube 27.
The stroke stop member 38 is engaged on the tube 27 rotatably journalled about the tube 27. The stroke stop member 38 has a box-like rectangular section 40 with two longer end surfaces 42 and 44 adjacent its longer sides 46 and 48 and two shorter end surfaces 43 and 45 adjacent its shorter sides 47 and 49. As shown in
Engagement between the stroke stop member 38 and the upper surface 50 of the support flange 17 limits the extent to which the piston element 12 may be moved downwardly, thus limiting the stroke of the piston element 12 and, therefore, the amount of fluid which can be discharged in a single stroke of the piston element 12 from an extended position and a retracted position limited by the stroke stop member 38 and then returning to the extended position as under the bias of the spring member 37.
The stroke stop member 38 is provided to be manually accessible and capable of being manually rotated between the first rotational position of
Reference is made to
Providing the stroke stop member 38 with the rectangular portion 40, as shown in
Reference is made to
In the embodiments illustrated in
Reference is made to
Referring to
As seen in
A ball valve seat member 75 of the inner ball valve 72 is fixedly secured in the inner end 20 of the chamber 26. A ball cage member 76 is engaged above, outwardly of the ball valve seat member 75, and serves to retain a ball 77 above the ball valve seat member 75 yet permits fluid flow centrally therethrough.
The helical coil spring 37 has an inner end engage the ball cage member 76 urging it outwardly into the ball valve seat member 75. An outer end of the spring 37 engages on a ball valve seat member 78 of the upper outer ball valve 70 resiliently resisting downward movement of the outer ball valve seat member 78. A ball cage member 79 is engaged above, outwardly of the ball valve seat member 78 and serves to retain a ball 80 above the ball valve seat member 78 yet permit fluid flow centrally therethrough.
Movement of the piston element 12 axially inwardly to a retracted position relative the piston chamber forming member 14 urges the sealing member 70 into the ball valve seat member 79 compressing the spring 37. On release of the piston element 12, the spring 37 biases the piston element 12 to return to an extended position. Reciprocal movement of the piston element 12 draws fluid through the inner end 20 of the chamber 26 and dispenses it out the discharge outlet 33 of the tube 27.
The preferred embodiments illustrated show the support flange 17 on the piston chamber forming element serving as a stop surface for the engagement by surfaces of the stroke stop member 38. Other structures could be provided as the stop surface which is fixed relative to the piston chamber forming element 14.
The preferred embodiments show use of the metal tube 27 as part of the piston element 12. Use of a such a metal tube 27 is not necessary and a discharge tube with a horizontal portion for passage of fluid therethrough can be provided, as of plastic material, to have an outer journaling surface of circular cross-section upon which a removable plastic stroke stop member 38 may be secured for relative rotation.
The invention has been described with reference to preferred embodiments. Many modifications and variations will now occur to a person skilled in the art. For a definition of the invention, reference is made to following claims.
Number | Date | Country | Kind |
---|---|---|---|
2567378 | Nov 2006 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
831758 | Yanacopoulo | Sep 1906 | A |
853670 | Yanacopoulo | May 1907 | A |
2096227 | De Weal | Oct 1937 | A |
2521433 | White | Sep 1950 | A |
3148806 | Meshberg | Sep 1964 | A |
3567081 | Meshberg | Mar 1971 | A |
3758005 | Christine et al. | Sep 1973 | A |
5253788 | Vandromme et al. | Oct 1993 | A |
6105826 | Oursin et al. | Aug 2000 | A |
6109547 | Ritsche | Aug 2000 | A |
6135325 | Fessel et al. | Oct 2000 | A |
6427876 | Fuchs | Aug 2002 | B1 |
Number | Date | Country |
---|---|---|
199 53 838 | Oct 2001 | DE |
1 460 001 | Sep 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20080121663 A1 | May 2008 | US |