The present disclosure relates generally to piston rings, and more specifically to a piston ring formed using a ring blank, e.g., a wire, having an improved cross-sectional shape.
A piston reciprocates within a cylinder of an internal combustion engine and compresses fluids, such as gases, within a combustion chamber of the cylinder. These compressed fluids are then ignited to expand within the combustion chamber thereby forcing the piston away from the point of ignition and cycling the piston to its original position. Pistons typically include at least one groove for receiving a piston ring. The piston ring forms a seal with the wall of the cylinder to prevent gases from escaping from the combustion chamber.
There are traditionally two different types of piston rings, oil control rings and compression rings. Regarding compression rings, a piston assembly typically includes one or more compression rings to generate a seal between the outer surface of the piston and the wall of the cylinder. An inner peripheral face of the ring fits into the ring groove of the piston while a portion of an outer peripheral face of the compression ring contacts the wall of the cylinder. The outer peripheral face of the compression ring generates a seal in the gap between the piston and the cylinder wall to prevent high-pressure combustion gases and air from escaping the combustion chamber. Typically, two compression rings (commonly referred to as first and second piston rings) and one oil control ring will be provided in each piston. In addition to preventing gases from escaping the combustion chamber, the second piston ring also may perform an oil scraping function, which entails scraping oil from the cylinder wall on the downward stroke of the piston. The oil scraping function is important for reducing oil consumption by preventing oil from entering the combustion chamber and being burned off
One known piston ring typically employed as a second piston ring is known as a Napier ring 10, an example of which is shown in
Some second piston rings are generally provided as a metallic wire that is subsequently machined to a desired cross-section. The machining processes may include turning and grinding, which is a costly and time consuming step to providing the desired shape. The machining process also results in burrs and chips from turning or grinding of the material, which results in waste and fine particles that need to be cleaned from the wire prior to use, which is a problem. Known designs have attempted to alleviate these problems by using cast iron second rings, rather than steel from drawn/rolled wires, as cast iron is easier to machine and therefore results in less machining costs and fewer burrs. However, the use of steel wire in second rings is desirable because of its relative lightness and durability when compared to cast iron, and thus a means of reducing machining processes required for forming a steel wire second ring is desirable.
Additionally, previous designs incorporating the Napier-style profile for use in a steel wire second ring required multiple machining operations. The need for multiple grinding steps using a plurality of grinding surfaces results from the need for a generally sharp edge 14 that is required to increase the scrapping effect of the second ring. However, typically drawn/rolled wire cannot generally be formed with sufficiently sharp-edged profiles (generally, corners in profiles of drawn/rolled wire have a rounded shape with a minimum radius of 0.05 mm). Thus, multiple grinding operations to sharpen the edge 14 are required. More specifically, a first grinding operation must be applied to a bottom surface of the ring, and a second grinding operation must be applied to the outer diameter surface. The standard Napier hook includes an axial offset 19, which prevents the underside of the hook from being contacted with a single grinding surface, e.g., during a lower surface 12 grinding operation. Thus, at least a second grinding operation is typically required along the outside diameter (O.D.) surface in order to form the relatively sharp edge 14 (in addition to the necessary lower surface 12 grinding operation). Previous micro-Napier type designs similarly include an axial offset 19, which completely prevents any contact by the grinding surface during application to the lower surface to the outer edge 14.
Outside diameter (O.D.) taper grinding is generally costly and is not particularly cost effective for use with steel rings. Accordingly, there is a need for a ring blank design, e.g., using wire, that allows for flexibility by the wire manufacturer to achieve a near sharp condition on the edge 14 of a Napier-style second ring while eliminating the cost and need for additional machining, thereby providing a cost-effective high performance steel piston ring.
Various exemplary illustrations of a piston ring, e.g., a second piston ring, and a method of making the same from a ring blank, e.g., a wire, are disclosed herein. One exemplary method may include providing a near net shape ring blank having a cross-sectional profile. The ring blank may generally comprise parallel upper and lower surfaces disposed between inner and outer peripheral faces, and a generally tapered nose area that is formed at the bottom of the outer peripheral face, wherein the nose area comprises a nose radius into which the outer peripheral face terminates. The ring blank may further comprise a hook area adjoining the nose area, wherein the hook area defines a hook shaped groove in an outer portion of the lower surface. The method may further comprise forming the near net shape ring blank into a ring shape, and grinding the lower surface and a lower portion of the nose area by a grinding surface that is generally planar, thereby truncating a lower portion of the nose area while grinding the lower surface of the ring.
While the claims are not limited to the illustrated examples, an appreciation of various aspects is best gained through a discussion of various examples thereof. Referring now to the drawings, exemplary illustrations are shown in detail. Although the drawings represent representative examples, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an illustrative example. Further, the exemplary illustrations described herein are not intended to be exhaustive or otherwise limiting or restricting to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:
Reference in the specification to “an exemplary illustration”, an “example” or similar language means that a particular feature, structure, or characteristic described in connection with the exemplary approach is included in at least one illustration. The appearances of the phrase “in an illustration” or similar type language in various places in the specification are not necessarily all referring to the same illustration or example.
Turning to
As shown in
Unlike the conventional Napier-style piston ring described above, in one exemplary illustration the piston ring wire 20 may be formed from a wire with a “near-net” shape (i.e., an initial wire shape after being drawn/rolled and prior to further machining such as turning or grinding) having as near of a sharp condition on the nose radius 26 as possible, e.g., as shown in
Any base ring blank or wire convenient may be used as piston ring blank, e.g., wire 20. Exemplary base wire may include a 1.54 millimeter (mm) wire, a 1.24 mm wire and a 1.04 mm wire, merely as examples. Moreover, these three exemplary dimensions are merely subsets of the total selection within each width family. Multiple radial thicknesses may be provided to correspond to a desired tension and/or diameter of a particular application.
Merely by way of example, as seen in
As illustrated in
The hook area 27 provides an accumulator volume that increases the effectiveness of the oil scraping effect by providing a space or volume into which the scraped oil may flow, thereby lowering the pressure in the volume below the second ring and reducing the amount of oil that leaks into the volume above the second ring.
As noted above, the wire 20 may include no axial offset of the nose area 25, or alternatively may include a very slight predetermined axial offset at the nose area 25, which is sufficiently small to allow the lower portion of the nose radius 26 and the lower surface 22 to be contacted simultaneously when a generally planar grinding surface, e.g., side grinder 50, removes material during a lower surface 22 grinding operation. A grinding operation of the lower surface 22 may occur generally simultaneously as a grinding operation of the upper surface 24. For example, as shown in
An additional machining process may include lapping the outer peripheral face 21 of the piston ring wire 20. For example, the outer peripheral face 21 may be lapped in a barrel (not shown) to provide a 360° contact with engine bore surfaces about a circumference of the piston ring formed from the piston ring wire 20 after it has been formed into a circular shape. A lapping operation may also further minimize the radius R1 on the nose 26, further sharpening a nose edge.
The ring 20 may also undergo application of a wear-resistant layer, e.g., in a chrome plating operation. For example, chrome plating may be deposited on the outer peripheral face 21. A wear-resistant layer such as a chrome plating or a physical vapor deposition coating, merely as examples, generally reduces scuffing and improves wear resistance of the ring 20.
In one exemplary method of applying a wear resistant layer, e.g., a chrome plating layer, multiple piston rings formed from piston ring wire 20, i.e., after the piston ring wire 20 is formed into a generally circular piston ring shape, may be stacked to facilitate application of the wear resistant layer to multiple rings at once. However, a problem arises in applying, for example, a chrome plate layer to multiple rings 20 at once, in that the chrome tends to bridge between adjacent rings stacked for plating. This is particularly problematic because the elimination of the axial offset 19 causes the outer peripheral faces 21 of adjacent stacked rings 20 to be very close to each other. Accordingly, to overcome this problem a chamfer 60 may be included in the cross-sectional profile of the wire piston ring 20 between the top surface 24 and the outer peripheral face 21, as shown in
The ring 20 may also include an inner diameter bevel 61 between the inner peripheral face 23 and the lower surface 22, as shown in
Turning now to
Proceeding to block S2, the wire is formed into a ring shape with the nose area 25 positioned radially outwardly as shown in
At block S3, a grinding operation is performed, in which a lower portion of the nose area 25 of the ring 20 and the lower surface 22 of the ring 20 are simultaneously ground, thereby created a truncated portion 40 in the nose area 25. More specifically, as noted above a generally planar single grinding surface 50 may be employed to grind both the nose area 25 and at least a planar portion of the lower surface 22 at the same time.
Proceeding to block S4, a wear resistant layer may be applied to the outer peripheral face 21 of the ring 20, e.g., a chrome plating or physical vapor deposition coating. If block S4 is included, it may be advantageous to employ a cross sectional profile having a chamfer 60 to prevent bridging of adjacent outer surfaces 21 and/or rings 20. Process 800 may then proceed to block S5.
At block S5, a lapping operation may be performed. For example, as described above, a lapping process may be applied to an outer peripheral face 21 of the ring 21, thereby further sharpening the nose area 25.
With regard to the processes, systems, methods, heuristics, etc. described herein, it should be understood that, although the steps of such processes, etc. have been described as occurring according to a certain ordered sequence, such processes could be practiced with the described steps performed in an order other than the order described herein. It further should be understood that certain steps could be performed simultaneously, that other steps could be added, or that certain steps described herein could be omitted. In other words, the descriptions of processes herein are provided for the purpose of illustrating certain embodiments, and should in no way be construed so as to limit the claimed invention.
Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and applications other than the examples provided would be upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future embodiments. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary in made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/570,616 filed on Dec. 14, 2011, the contents of which are hereby expressly incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61570616 | Dec 2011 | US |