The invention relates to a three-part piston ring to be accommodated in a circumferential groove of the working piston of a piston machine. The piston ring has three open components essentially in the manner of a circular ring, to be precise with an upper part ring having an upwardly directed flat-planar upper ring surface and with a lower part ring having a downwardly directed flat-planar lower ring surface, and with a ring spring which is arranged between the two part rings and acts with spring force upon these radially outward and which contains, drawn in, a thin wire-like pin in the abutting region.
The most diverse possible proposals for piston rings and their embodiments have become known from the prior art. Thus, a simple ring of this type comprises two open flat part rings and an approximately zigzag-shaped, likewise open ring spring which is to be arranged or is arranged between these and has an approximately rectangular cross section, and has central orifices in the ring body, into which ring spring a thin guide wire likewise having a profile in the form of a circular ring is drawn on the right and left of the ring spring orifice.
Each of the approximately trapezoidal zigzag portions of the ring spring, which are arranged toward the ring axis or ring spring axis, that is to say radially inward, has in each case a tongue projecting upwardly and downwardly and having a lower height than the thickness of the flat piston rings. These tongues bear in each case against the inner-flank surface, directed radially inward toward the ring axis, of the two part rings arranged above and below the ring spring and thus ensure a radially outwardly effective action of force upon the two part rings by the ring spring.
Even though the open part rings of this known piston ring can be produced relatively simply as flat rings, the manufacture of the ring spring which acts with force radially outwardly upon the part rings and which is arranged between the two part rings is somewhat complicated in manufacturing terms.
The object of the present invention, then, is to provide a piston ring which is especially effective also with regard to lubrication and in which, in any situation, care is taken to ensure that the part rings bear particularly closely at their periphery against the inner wall of a working cylinder, within which the piston moves up and down in an oscillating manner, while each of the piston rings is to bear individually against the cylinder wall sealingly and thus individually ensures in each case optimally a snug bearing contact against the cylinder wall. Furthermore, there was the endeavor to ensure that the ring spring is to have as simple a build as possible and the desired full and continuous lubrication is not subjected to particular resistance at any point along the spring profile.
The subject of the invention, therefore, is, as initially mentioned, a three-part piston ring according to the independent claim.
The combination of a continuous inner indentation channel or inner-flank indentation, formed jointly on the inner surfaces of the two part rings and having an approximately semicircular cross section and directed radially toward the ring axis, in each case on the two mutually confronting elevations of the two part rings, with the somewhat smaller cross-sectional radius of the tubular spring not only ensures that the part-ring outer flanks bear snugly against the cylinder wall, but also achieves a kind of urging apart, occurring in the direction of the ring axis, of the mutually confronting plateau surfaces of the elevations of the part rings and, consequently, also actually smooth upwardly and laterally directed bearing of the respectively upper and lower ring surfaces against the respective sidewall of the piston-ring reception grooves of the working piston.
This effect of pressing down the piston rings preferably formed from cast material can be increased if, in particular, each of the two quarter-circle indentations has in its middle region a portion interrupting the quarter-circle profile and having a straight cross-sectional line, that is to say if a short piece of an (only singly curved) conical surface is arranged there within the two-dimensionally curved quarter surfaces.
Each of the two part rings has continuous non-symmetrical noses or projections which correspond to the different loads of the piston moved in an oscillating manner, which both have centrally upwardly and obliquely radially outwardly directed oblique surfaces, that is to say actually short cone (frustum) surface areas.
The preferred angular inclination of said oblique surfaces on the two externally continuous noses or projections of the part rings is as follows: Each of the oblique surfaces of the peripherally continuous projections of the two part rings has a preferably identical angle (α) to the upper and the lower ring surface of 40 to 50°.
Conventionally, during operation, the two part rings bear one against the other in a sheet-like manner with the plateau surfaces of their elevations.
It may also be, however, that, during operation, due to the radially outwardly acting pressure of the tubular spring upon the two quarter-circle indentations interrupted centrally by the abovementioned conical surface, said plateau surfaces of the elevations lift off from one another by a small amount.
It has been shown that an especially uniform lubricant distribution is achieved when the tubular spring has a narrower helical winding on both sides toward its mutually opposite ends directed toward the spring orifice than in its middle region.
As regards the form of the elevations and of the depressions, arranged between these and having a planar bottom, on the two mutually confronting surfaces of the part rings, approximately flat-trapezoidal forms are beneficial for both, the longer trapezium parallel sides of the elevations being arranged radially inward with respect to the ring axis, and the longer trapezium parallel sides of the depressions arranged between the elevations pointing radially outward between these.
According to a development, there is provision whereby the trapezium elevations have a greater surface extent than the depressions, and whereby the distance between the part rings is thus preserved during a mutual rotation of the part rings with respect to one another.
The invention is explained in more detail by means of the drawing:
They show, further, the outwardly pointing continuous projection 13.
In
What can be seen very clearly from this figure is the quarter-circle indentation 14 which extends continuously around on the inner flank of the part ring 1, that is to say actually on the elevations 16, and which finally, rounded slightly, terminates on the inner flank of the part ring 1. Also depicted there is a possible conical surface 141 in the middle region of the quarter-circle indentation 14.
It can be seen very clearly there, particularly from
In
Finally,