The present invention relates generally to systems and methods for creating a seal between a blocking element, such as a reciprocating piston, and a surface adjacent to the blocking element, such as the wall of a piston cylinder.
Reciprocating piston and cylinder arrangements in internal combustion engines, pumps, and the like, typically require a seal between the piston and the cylinder so that a pressure difference can exist between the two ends of the piston. This pressure difference permits the piston to provide a fluid pumping action useful in many things, including pumps and internal combustion engines. Sufficiently sealed piston and cylinder arrangements can be used in two, four, or multi-cycle internal combustion engines, free-piston engines, caloric engines, turbochargers, superchargers, compressors, pumps, and vacuums, for example.
It is to be appreciated that the reference herein to a “cylinder” is not limited to a chamber having a cylindrical shape or circular cross-section. Instead, the term cylinder refers to any chamber or cavity that receives a piston having an outer shape adapted to allow the piston to seal against the sidewall of the cylinder but at the same time permit the piston to slide back and forth reciprocally within the cylinder in a pumping motion.
Engine cylinders may include one or more intake ports and one or more exhaust ports that, collectively, permit gases to flow into, and out of, the engine cylinder, respectively. Engine valves, such as poppet valves, may be used to selectively open and close the intake and exhaust ports. The selectively timed opening and closing of the intake and exhaust valves, in conjunction with the pumping motion of the engine pistons and the introduction of fuel, may provide an air/fuel charge to the engine cylinder for combustion and removal of the spent charge exhaust gases from the cylinder after combustion.
Existing internal combustion engine pistons used for Otto cycle or Diesel cycle operation, for example, typically have a generally cylindrical shape. More specifically, the typical Otto or Diesel cycle engine piston may have a generally smooth cylindrically shaped skirt with a circular cross-section that includes circumferential recesses to receive one or more sealing piston rings. The piston and piston ring assembly may slide reciprocally within a cylinder between top dead center and bottom dead center positions. The interface of the piston rings with the cylinder wall may be lubricated with engine oil, for example.
Internal combustion engines almost universally require liquid lubricant, such as engine oil, to lubricate the interface between the piston and the cylinder within which it moves back and forth in a reciprocal motion. Lubrication systems are usually mission critical and the failure of a lubrication system can be catastrophic. The need for a piston lubricant brings with it many disadvantages. The lubricant wears out and becomes contaminated over time, and thus requires replacement, adding expense and inconvenience to engine operation. Many lubricants require pumps and passages to reapply the lubricant to moving parts, such as the engine pistons. Pumps and passages, and other elements of an active lubrication system need to operate correctly and require seals between interconnected elements. Lubrication system leaks naturally occur as seals deteriorate over time, and pumps leak and wear out, adding still further maintenance expense and inconvenience to engine operation. Leaks can also permit lubricant to enter the combustion chamber, interfering with combustion, and fouling injectors and spark or glow plugs. Lubricant in the combustion chamber can also result in unwanted exhaust emissions. Leaks can also result in the contamination of the lubricant with combustion by-products. All of the foregoing issues are attendant to the use of lubricated pistons, and all add failure modes and maintenance costs. Accordingly, there is a need for internal combustion engines that depend less, or not at all, on piston lubrication.
While embodiments of the invention are not limited to use in internal combustion engines, such engines may benefit from the invention since they routinely use piston and cylinder arrangements in which the piston is sealed with respect to the cylinder using one or more vertically spaced sealing piston rings disposed about the outer surface of the piston skirt. Many other devices besides internal combustion engines and pumps may include moving elements which require that a seal be formed between them. Embodiments of the invention may be used for these applications as well.
Accordingly, it is an object of some, but not necessarily all embodiments of the present invention to provide contact-less or semi contact-less sealing systems and methods between a blocking element and an adjacent surface.
Accordingly, it is an object of some, but not necessarily all embodiments of the present invention to provide contact-less or semi contact-less sealing systems and methods between a piston (with or without piston rings) and a surrounding cylinder.
It is also an object of some, but not necessarily all embodiments of the present invention to provide sealing systems and methods which reduce frictional losses resulting from contact between the piston rings and the surrounding cylinder by reducing or eliminating the use of piston rings.
It is also an object of some, but not necessarily all embodiments of the present invention to provide sealing systems and methods which does not require the use of a lubricant or requires less changing of a lubricant.
It is also an object of some, but not necessarily all, embodiments of the present invention to provide sealing systems which wear less and sealing methods which induce less wear upon components within the system thereby reducing maintenance requirements and increasing the reliability of the system.
It is also an object of some, but not necessarily all, embodiments of the present invention to reduce the number of parts required for sealing so as to reduce cost and replacement part inventory requirements of the system.
It is also an object of some, but not necessarily all, embodiments of the present invention to provide improved heat transfer between the piston and cylinder surfaces thereby reducing the complexity of the cooling system and increasing system efficiency.
It is also an object of some, but not necessarily all, embodiments of the present invention to provide restorative self-correcting centering action of moving members such as a reciprocating piston within a cylinder.
These and other advantages of some, but not necessarily all, embodiments of the present invention will be apparent to those of ordinary skill in the internal combustion engine arts.
Responsive to the foregoing challenges, Applicant has developed an innovative sealing system comprising: a first structure surface; a blocking element having a first end, a second end, and a blocking element surface extending between the first end and the second end; a plurality of laterally spaced pockets arranged in a plurality of rows to form a field of pockets on but not extending through the first structure surface, or on but not extending through the blocking element surface, or on but not extending through both the first structure surface and the blocking element surface; and a working fluid provided at the blocking element first end at an elevated pressure relative to a working fluid pressure at the blocking element second end, wherein the first structure surface is disposed in close proximity to, and spaced a substantially uniform distance from, the blocking element surface; and wherein a seal equivalent is produced from working fluid interaction with the field of pockets.
Applicant has further developed an innovative sealing system comprising: a first structure surface; a blocking element having a first end, a second end, and a blocking element surface extending between the first end and the second end; and a plurality of spaced pockets arranged as a field of pockets on but not extending through the first structure surface, or on but not extending through the blocking element surface, or on but not extending through both the first structure surface and the blocking element surface, wherein the first structure surface is disposed in close proximity to, and spaced a substantially uniform distance from, the blocking element surface.
Applicant has still further developed an innovative internal combustion engine comprising: an engine cylinder having a cylinder wall; a piston disposed in the engine cylinder, said piston having a skirt and a head; and a plurality of spaced pockets arranged as a field of pockets on but not extending through the piston skirt, or on but not extending through the engine cylinder, or on but not extending through both the piston skirt and the engine cylinder.
Applicant has still further developed an innovative method of sealing a first structure surface relative to a blocking element surface between a blocking element first end and a blocking element second end, wherein the first structure surface is disposed in close proximity to, and spaced a substantially uniform distance from, the blocking element surface, said method comprising: providing a plurality of laterally spaced pockets arranged in a plurality of rows to form a field of pockets on but not extending through the first structure surface, or on but not extending through the blocking element surface, or on but not extending through both the first structure surface and the blocking element surface; providing a working fluid at the blocking element first end; and moving the blocking element surface relative to the first structure surface to produce a seal equivalent due to working fluid turbulence induced by the field of pockets.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed.
In order to assist the understanding of this invention, reference will now be made to the appended drawings, in which like reference characters refer to like elements. The drawings are exemplary only, and should not be construed as limiting the invention.
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. With reference to
The piston 36 may include an upper end 50 or head, a lower end 51 distal from the upper end, and a side wall or skirt 35 extending between the piston head and the lower end of the piston. The piston 36 may be attached to an unguided connector rod 42, which in turn may be connected to a crank 46, which is connected to a crankshaft 44 in the crankcase.
The piston skirt 35 may have a circular cross-section when viewed from above looking down into the cylinder 38 onto the piston head 50. The piston head 50 may be domed cooperatively with the upper end wall of the combustion chamber 21. When viewed from above, looking down into the cylinder 38, the cylinder may also have a circular shape. It is appreciated that the cylinder 38, piston skirt 35 and piston head 50 may have a non-circular cross-section shape, such as a rectangular shape, when viewed from above in alternative embodiments.
The piston 36 may be disposed within the combustion chamber 21 of the cylinder 38 such that the piston skirt 35 is closely aligned with, but uniformly spaced from and parallel to, the combustion chamber 21 side wall. The upper end wall and side wall of the combustion chamber 21, together with the piston head 50, may form a working space or compression area 24 which may receive a working fluid. The piston 36 may be configured to slide within the combustion chamber 21, reciprocally towards and away from the upper end wall.
With reference to
The field 25 of pockets 22 may extend in two (x and y) dimensions on a planar surface or extend in two dimensions on the surface of an object curved in space (e.g., the piston 35 having a circular cross-section). Each of the pockets 22 may be aligned with pockets in adjacent rows and/or columns, aligned with the pockets disposed in rows and/or columns set one or more intervening rows and/or columns away, or unaligned with each other. Preferably, the field 25 of pockets 22 includes two or more pockets spaced from each other in the x direction and two or more pockets spaced from each other in the y-direction. Further, preferably the dimension or size of each of the pockets 22 at the mouth is significantly smaller than the dimension of the surface on which it is disposed (i.e., the field 25 dimensions) when measured in either the x or y direction. More, preferably, the dimension or size of each of the pockets 22 at the mouth is significantly smaller than the dimension of the surface on which it is disposed when measured in both the x and y direction. By significantly smaller, it is meant that the dimension or size of each pocket at the mouth is less than half, and more preferably, less than one quarter, of the dimension of the surface on which it is disposed when measured in the x and/or y direction. Further, the total surface area in the field 25 (e.g., the surface area of the piston skirt 35) occupied by the lands 23 preferably exceeds the total surface area attributable to the mouths of the pockets 22 in the field.
With reference to
With continued reference to
The resulting turbulence may be a function of the physical properties of the working fluid 26 in the system and the diameter (or height and width), internal geometry, relational location, and depth of each individual pocket 22 in the field 25. The resulting turbulence may also be a function of the practical small clearance distance or seal gap due to the ratio of the spatial volume above each land 23 to the spatial volume above and within each pocket 22. This localized turbulence may interact with the flowing working fluid 26 and generate a vortex motion that impedes further flow of the working fluid 26. The decrease in working fluid flow may momentarily decrease the resonance effect, which in turn may momentarily decease the localized turbulence, which then may allow the flow rate of the working fluid 26 to momentarily increase again.
When the piston 36 is on an upward stroke, the working fluid 26 which has passed over the pockets 22 in the upper most row (closest to the piston 36 upper end) may next encounter the pockets in the adjacent row of the pocket field 25 where the described turbulence phenomena repeats, but at a lower starting pressure. This process may repeat as the working fluid 26 passes over successive rows of the sealing system pocket field 25 with successively relatively decreased starting pressure until the local pressure in the seal gap is sufficiently reduced (preferably, but not necessarily, to the pressure level of the working fluid contained in the cylinder 38 below the piston 36). The repeating cycle of pressure reduction from pocket 22 to pocket in the field 25 may create a seal or the effective equivalent of a seal since only a tolerably (or preferably no) working fluid 26 will flow past the point at which the local pressure in the seal gap is at or below the pressure of the working fluid in the space below the piston 36. It is appreciated that a “seal equivalent” with a tolerable level of leakage resulting from sufficiently reduced pressure across the face of the piston skirt 35, results when the amount of leakage of working fluid permits the operation of the engine in which the seal equivalent is utilized.
The localized turbulence at each successive pocket 22 may decrease with time due to the gradual leaking allowed by the resonant action of the pockets. Therefore, the localized turbulence may also be a function of the rate of motion of the piston 36 relative to the chamber 21 side wall, as the motion may be responsible for the pressure changes around the piston 36 in the chamber. The effectiveness of the sealing system may require working fluid 26 pressures which fluctuate to provide energetic flows into the sealing system field 25 by providing a consistent flow in and out of the pockets 22, thereby maintaining the effectiveness of the sealing system.
The rate of the sealing system leakage may be modified by using different land 23 spacing patterns and pocket 22 geometries within the sealing system pattern 25. The land 23 spacing may be selected to induce the pockets 22 to provide counter flow to prior (upper) pockets while forward (lower) pockets may prevent working fluid 26 flow to induce internal decaying self-reinforcing oscillations within the sealing system field 25.
The effectiveness of the sealing system pattern 25 for a particular application may be a function of the outside dimensions of the sealing system field 25 in addition to the design parameters of the individual pockets 22. With renewed reference to
With reference to
An alternative embodiment of the present invention is illustrated in
The piston skirt 35 may not have an outer perimeter circular shape in alternative embodiments of the invention, but instead may be formed in any shape, such as ovular, rectangular, etc., so long as any corners of the shape are rounded. For example, third and fourth embodiments of the present invention are illustrated in
A fifth embodiment of the present invention is illustrated in
It is appreciated that the described pistons, vanes, and other structures (collectively referred to as “blocking elements”) which are configured to form a seal equivalent with a surface, such as a chamber wall, may be used not only in power producing engines, but pumps and other devices within which a seal or seal equivalent is needed.
It is also appreciated that the field 25 of pockets 22, and/or the equalizing grooves 40, described as being formed on or in the surface of a blocking element may instead be formed on or in the surface opposing the blocking element in alternative embodiments. It is also appreciated that the field 25 of pockets 22 described as being formed on or in the surface of a blocking element may also be formed on or in the surface opposing the blocking element in addition to being formed on or in the surface of the blocking element.
It is also appreciated that the foregoing described structures may be used to provide a sealing system for fluids, including without limitation, compressible fluids, gasses, liquids, suspensions, plasmas, and Bose-Einstein condensates.
It is also appreciated that pockets 22 may have any shape at the mouth, at a bottom, and along the pocket internal walls extending between the mouth and the bottom, that is effective for producing the desired pressure reduction effect. Such shapes may be rounded, circular, rectangular, square, trapezoidal, parallelogram, rhombic, oval, elliptical, triangular, and polygonal, for example. The cross-sections of the equalizing grooves 40 may also have any of the foregoing or other shapes so long as they produce the desired pressure balancing effect. It is also appreciated that the pockets 22 may have flat, rounded, or contoured bottoms distal from the pocket mouths. A flat pocket 22 bottom may extend in a plane that is parallel to the plane in which the lands 23 surrounding the pocket extend. Alternatively, such flat pocket bottoms may be angled and extend in planes that are non-parallel to the plane in which the surrounding lands extend.
It is also appreciated that the pockets 22 may in some embodiments have filleted, chamfered, or other broken/non-sharp edges at the junction of the pocket mouth with the surrounding lands.
As will be understood by those skilled in the art, the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The elements described above are provided as illustrative examples of one technique for implementing the invention. One skilled in the art will recognize that many other implementations are possible without departing from the present invention as recited in the claims. For example, the pockets and/or pattern of pockets need not be uniform and/or the lands need not be flat without departing from the intended scope of the invention. Further, the pattern of pockets may be provided in the cylinder wall instead of, and/or in addition to on the piston skirt. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting, of the scope of the invention. It is intended that the present invention cover all such modifications and variations of the invention, provided they come within the scope of the appended claims and their equivalents.
This application relates to and claims the priority of U.S. provisional patent application Ser. No. 62/501,295, which was filed May 4, 2017; U.S. provisional patent application Ser. No. 62/479,013, which was filed Mar. 30, 2017; U.S. provisional patent application Ser. No. 62/491,629, which was filed Apr. 28, 2017; U.S. patent application Ser. No. 15/903,636, which was filed Feb. 23, 2018; U.S. patent application Ser. No. 15/934,625, which was filed Mar. 23, 2018; U.S. patent application Ser. No. 15/934,742, which was filed Mar. 23, 2018; U.S. patent application Ser. No. 15/936,713, which was filed Mar. 27, 2018; U.S. patent application Ser. No. 15/937,293, which was filed Mar. 27, 2018; U.S. patent application Ser. No. 15/938,130, which was filed Mar. 28, 2018; and U.S. patent application Ser. No. 15/938,427, which was filed Mar. 28, 2018.
Number | Name | Date | Kind |
---|---|---|---|
1016561 | Grabler | Feb 1912 | A |
1046359 | Winton | Dec 1912 | A |
1329559 | Tesla | Feb 1920 | A |
1418838 | Setz | Jun 1922 | A |
1511338 | Cyril | Oct 1924 | A |
1527166 | Maurice | Feb 1925 | A |
1639308 | Orr | Aug 1927 | A |
1869178 | Thuras | Jul 1932 | A |
1967682 | Ochtman, Jr. | Jul 1934 | A |
1969704 | D'Alton | Aug 1934 | A |
2025297 | Meyers | Dec 1935 | A |
2224475 | Evans | Dec 1940 | A |
2252914 | Balton | Aug 1941 | A |
2283567 | Barton | May 1942 | A |
2442917 | Butterfield | Jun 1948 | A |
2451271 | Balster | Oct 1948 | A |
2468976 | Herreshoff | May 1949 | A |
2471509 | Anderson | May 1949 | A |
2878990 | Zurcher | Mar 1950 | A |
2644433 | Anderson | Jul 1953 | A |
2761516 | Vassilkovsky | Sep 1956 | A |
2766839 | Baruch | Oct 1956 | A |
2898894 | Holt | Aug 1959 | A |
2915050 | Allred | Dec 1959 | A |
2956738 | Rosenschold | Oct 1960 | A |
2977943 | Lieberherr | Apr 1961 | A |
2979046 | Hermann | Apr 1961 | A |
3033184 | Jackson | May 1962 | A |
3035879 | Jost | May 1962 | A |
3113561 | Heintz | Dec 1963 | A |
3143282 | McCrory | Aug 1964 | A |
3154059 | Witzky | Oct 1964 | A |
3171425 | Berlyn | Mar 1965 | A |
3275057 | Trevor | Sep 1966 | A |
3399008 | Farrell | Aug 1968 | A |
3409410 | Spence | Nov 1968 | A |
3491654 | Zurcher | Jan 1970 | A |
3534771 | Everdam | Oct 1970 | A |
3621821 | Jarnuszkiewicz | Nov 1971 | A |
3749318 | Cottell | Jul 1973 | A |
3881459 | Gaetcke | May 1975 | A |
3892070 | Bose | Jul 1975 | A |
3911753 | Daub | Oct 1975 | A |
3973532 | Litz | Aug 1976 | A |
4043224 | Quick | Aug 1977 | A |
4046028 | Vachris | Sep 1977 | A |
4077429 | Kimball | Mar 1978 | A |
4127332 | Thiruvengadam | Nov 1978 | A |
4128388 | Freze | Dec 1978 | A |
4164988 | Virva | Aug 1979 | A |
4182282 | Pollet | Jan 1980 | A |
4185597 | Cinquegrani | Jan 1980 | A |
4271803 | Nakanishi | Jun 1981 | A |
4300499 | Nakanishi | Nov 1981 | A |
4312305 | Noguchi | Jan 1982 | A |
4324214 | Garcea | Apr 1982 | A |
4331118 | Cullinan | May 1982 | A |
4332229 | Schuit | Jun 1982 | A |
4343605 | Browning | Aug 1982 | A |
4357916 | Noguchi | Nov 1982 | A |
4383508 | Irimajiri | May 1983 | A |
4467752 | Yunick | Aug 1984 | A |
4480597 | Noguchi | Nov 1984 | A |
4488866 | Schirmer | Dec 1984 | A |
4541377 | Amos | Sep 1985 | A |
4554893 | Vecellio | Nov 1985 | A |
4570589 | Fletcher | Feb 1986 | A |
4576126 | Ancheta | Mar 1986 | A |
4592318 | Pouring | Jun 1986 | A |
4597342 | Green | Jul 1986 | A |
4598687 | Hayashi | Jul 1986 | A |
4669431 | Simay | Jun 1987 | A |
4715791 | Berlin | Dec 1987 | A |
4724800 | Wood | Feb 1988 | A |
4756674 | Miller | Jul 1988 | A |
4788942 | Pouring | Dec 1988 | A |
4836154 | Bergeron | Jun 1989 | A |
4874310 | Seemann | Oct 1989 | A |
4879974 | Alvers | Nov 1989 | A |
4919611 | Flament | Apr 1990 | A |
4920937 | Sasaki | May 1990 | A |
4936269 | Beaty | Jun 1990 | A |
4969425 | Slee | Nov 1990 | A |
4990074 | Nakagawa | Feb 1991 | A |
4995349 | Tuckey | Feb 1991 | A |
5004066 | Furukawa | Apr 1991 | A |
5007392 | Niizato | Apr 1991 | A |
5020504 | Morikawa | Jun 1991 | A |
5083539 | Cornelio | Jan 1992 | A |
5154141 | McWhorter | Oct 1992 | A |
5168843 | Franks | Dec 1992 | A |
5213074 | Imagawa | May 1993 | A |
5222879 | Kapadia | Jun 1993 | A |
5251817 | Ursic | Oct 1993 | A |
5343618 | Arnold | Sep 1994 | A |
5357919 | Ma | Oct 1994 | A |
5390634 | Walters | Feb 1995 | A |
5397180 | Miller | Mar 1995 | A |
5398645 | Haman | Mar 1995 | A |
5454712 | Yap | Oct 1995 | A |
5464331 | Sawyer | Nov 1995 | A |
5479894 | Noltemeyer | Jan 1996 | A |
5593399 | Tanzer | Jan 1997 | A |
5694891 | Liebich | Dec 1997 | A |
5714721 | Gawronski | Feb 1998 | A |
5779461 | Iizuka | Jul 1998 | A |
5791303 | Skripov | Aug 1998 | A |
5872339 | Hanson | Feb 1999 | A |
5937821 | Oda | Aug 1999 | A |
5957096 | Clarke | Sep 1999 | A |
6003488 | Roth | Dec 1999 | A |
6019188 | Nevill | Feb 2000 | A |
6119648 | Araki | Sep 2000 | A |
6138616 | Svensson | Oct 2000 | A |
6138639 | Hiraya | Oct 2000 | A |
6199369 | Meyer | Mar 2001 | B1 |
6205962 | Berry, Jr. | Mar 2001 | B1 |
6237164 | LaFontaine | May 2001 | B1 |
6257180 | Klein | Jul 2001 | B1 |
6363903 | Hayashi | Apr 2002 | B1 |
6382145 | Matsuda | May 2002 | B2 |
6418905 | Baudlot | Jul 2002 | B1 |
6446592 | Wilksch | Sep 2002 | B1 |
6474288 | Blom | Nov 2002 | B1 |
6494178 | Cleary | Dec 2002 | B1 |
6508210 | Knowlton | Jan 2003 | B2 |
6508226 | Tanaka | Jan 2003 | B2 |
6536420 | Cheng | Mar 2003 | B1 |
6639134 | Schmidt | Oct 2003 | B2 |
6668703 | Gamble | Dec 2003 | B2 |
6682313 | Sulmone | Jan 2004 | B1 |
6691932 | Schultz | Feb 2004 | B1 |
6699031 | Kobayashi | Mar 2004 | B2 |
6705281 | Okamura | Mar 2004 | B2 |
6718938 | Szorenyi | Apr 2004 | B2 |
6758170 | Walden | Jul 2004 | B1 |
6769390 | Hattori | Aug 2004 | B2 |
6814046 | Hiraya | Nov 2004 | B1 |
6832589 | Kremer | Dec 2004 | B2 |
6834626 | Holmes | Dec 2004 | B1 |
6971379 | Sakai | Dec 2005 | B2 |
6973908 | Paro | Dec 2005 | B2 |
7074992 | Schmidt | Jul 2006 | B2 |
7150609 | Kiem | Dec 2006 | B2 |
7261079 | Gunji | Aug 2007 | B2 |
7296545 | Ellingsen, Jr. | Nov 2007 | B2 |
7341040 | Wiesen | Mar 2008 | B1 |
7360531 | Yohso | Apr 2008 | B2 |
7452191 | Tell | Nov 2008 | B2 |
7559298 | Cleeves | Jul 2009 | B2 |
7576353 | Diduck | Aug 2009 | B2 |
7584820 | Parker | Sep 2009 | B2 |
7628606 | Browning | Dec 2009 | B1 |
7634980 | Jarnland | Dec 2009 | B2 |
7717701 | D'Agostini | May 2010 | B2 |
7810479 | Naquin | Oct 2010 | B2 |
7900454 | Schoell | Mar 2011 | B2 |
7984684 | Hinderks | Jul 2011 | B2 |
8037862 | Jacobs | Oct 2011 | B1 |
8215292 | Bryant | Jul 2012 | B2 |
8251040 | Jang | Aug 2012 | B2 |
8284977 | Ong | Oct 2012 | B2 |
8347843 | Batiz-Vergara | Jan 2013 | B1 |
8385568 | Goel | Feb 2013 | B2 |
8479871 | Stewart | Jul 2013 | B2 |
8640669 | Nakazawa | Feb 2014 | B2 |
8656870 | Sumilla | Feb 2014 | B2 |
8714135 | Anderson | May 2014 | B2 |
8776759 | Cruz | Jul 2014 | B2 |
8800527 | McAlister | Aug 2014 | B2 |
8827176 | Browning | Sep 2014 | B2 |
8857405 | Attard | Oct 2014 | B2 |
8863724 | Shkolnik | Oct 2014 | B2 |
8919321 | Burgess | Dec 2014 | B2 |
9175736 | Greuel | Nov 2015 | B2 |
9289874 | Sabo | Mar 2016 | B1 |
9309807 | Burton | Apr 2016 | B2 |
9441573 | Sergin | Sep 2016 | B1 |
9512779 | Redon | Dec 2016 | B2 |
9736585 | Pattok | Aug 2017 | B2 |
9739382 | Laird | Aug 2017 | B2 |
9822968 | Tamura | Nov 2017 | B2 |
9854353 | Wang | Dec 2017 | B2 |
9938927 | Ando | Apr 2018 | B2 |
20020114484 | Crisco | Aug 2002 | A1 |
20020140101 | Yang | Oct 2002 | A1 |
20030111122 | Horton | Jun 2003 | A1 |
20050036896 | Navarro | Feb 2005 | A1 |
20050087166 | Rein | Apr 2005 | A1 |
20050155645 | Freudendahl | Jul 2005 | A1 |
20050257837 | Bailey | Nov 2005 | A1 |
20060230764 | Schmotolocha | Oct 2006 | A1 |
20070039584 | Ellingsen, Jr. | Feb 2007 | A1 |
20070101967 | Pegg | May 2007 | A1 |
20080169150 | Kuo | Jul 2008 | A1 |
20080184878 | Chen | Aug 2008 | A1 |
20080185062 | Johannes Nijland | Aug 2008 | A1 |
20100071640 | Mustafa | Mar 2010 | A1 |
20110030646 | Barry | Feb 2011 | A1 |
20110132309 | Turner | Jun 2011 | A1 |
20110139114 | Nakazawa | Jun 2011 | A1 |
20110235845 | Wang | Sep 2011 | A1 |
20120103302 | Attard | May 2012 | A1 |
20120114148 | Goh Kong San | May 2012 | A1 |
20120186561 | Bethel | Jul 2012 | A1 |
20130036999 | Levy | Feb 2013 | A1 |
20130327039 | Schenker et al. | Dec 2013 | A1 |
20140056747 | Kim | Feb 2014 | A1 |
20140109864 | Drachko | Apr 2014 | A1 |
20140199837 | Hung | Jul 2014 | A1 |
20140361375 | Deniz | Dec 2014 | A1 |
20150059718 | Claywell | Mar 2015 | A1 |
20150153040 | Rivera Garza | Jun 2015 | A1 |
20150167536 | Toda et al. | Jun 2015 | A1 |
20150184612 | Takada et al. | Jul 2015 | A1 |
20150337878 | Schlosser | Nov 2015 | A1 |
20150354570 | Karoliussen | Dec 2015 | A1 |
20160017839 | Johnson | Jan 2016 | A1 |
20160064518 | Liu | Mar 2016 | A1 |
20160258347 | Riley | Sep 2016 | A1 |
20160265416 | Ge | Sep 2016 | A1 |
20160348611 | Suda et al. | Dec 2016 | A1 |
20160348659 | Pinkerton | Dec 2016 | A1 |
20160356216 | Klyza | Dec 2016 | A1 |
20170248099 | Wagner | Aug 2017 | A1 |
20170260725 | McAlpine | Sep 2017 | A1 |
20180096934 | Siew | Apr 2018 | A1 |
20180130704 | Li | May 2018 | A1 |
Number | Date | Country |
---|---|---|
201526371 | Jul 2010 | CN |
106321916 | Jan 2017 | CN |
206131961 | Apr 2017 | CN |
19724225 | Dec 1998 | DE |
0025831 | Apr 1981 | EP |
2574796 | Apr 2013 | EP |
1408306 | Aug 1965 | FR |
2714473 | Jun 1995 | FR |
104331 | Jan 1918 | GB |
139271 | Mar 1920 | GB |
175179 | Nov 1937 | GB |
854135 | Nov 1960 | GB |
1437340 | May 1976 | GB |
1504279 | Mar 1978 | GB |
1511538 | May 1978 | GB |
2140870 | Dec 1984 | GB |
S5377346 | Jul 1978 | JP |
S5833393 | Feb 1983 | JP |
58170840 | Oct 1983 | JP |
S5973618 | Apr 1984 | JP |
H02211357 | Aug 1990 | JP |
H0638288 | May 1994 | JP |
2000064905 | Mar 2000 | JP |
2003065013 | Mar 2003 | JP |
5535695 | Jul 2014 | JP |
201221753 | Jun 2012 | TW |
1983001485 | Apr 1983 | WO |
2006046027 | May 2006 | WO |
2007065976 | Jun 2007 | WO |
WO-2007076802 | Jul 2007 | WO |
2010118518 | Oct 2010 | WO |
2016145247 | Sep 2016 | WO |
Entry |
---|
Graunke, K. et al., “Dynamic Behavior of Labyrinth Seals in Oilfree Labyrinth-Piston Compressors” (1984). International Compressor Engineering Conference. Paper 425. http://docs.lib.purdue.edu/icec/425. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/024102, dated Jun. 25, 2018, 10 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/024477, dated Jul. 20, 2018, 14 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/024485, dated Jun. 25, 2018, 16 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/024844, dated Jun. 8, 2018, 9 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/024852, dated Jun. 21, 2018, 9 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/025133, dated Jun. 28, 2018, 9 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/025151, dated Jun. 25, 2018, 14 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/025471, dated Jun. 21, 2018, 10 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/029947, dated Jul. 26, 2018, 12 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/030937, dated Jul. 9, 2018, 7 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/053264, dated Dec. 3, 2018, 10 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2018/053350, dated Dec. 4, 2018, 7 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2019/014936, dated Apr. 18, 2019, 9 pages. |
International Searching Authority Search Report and Written Opinion for application PCT/US2019/015189, dated Mar. 25, 2019, 10 pages. |
Keller, L. E., “Application of Trunk Piston Labyrinth Compressors in Refrigeration and Heat Pump Cycles” (1992). International Compressor Engineering Conference. Paper 859. http://docs.lib.purdue.edu/icec/859. |
Quasiturbine Agence, “Theory—Quasiturbine Concept” [online], Mar. 5, 2005 (Mar. 5, 2005), retrieved from the internet on Jun. 29, 2018) URL:http://quasiturbine.promci.qc.ca/ETheoryQTConcept.htm; entire document. |
Vetter, H., “The Sulzer Oil-Free Labyrinth Piston Compressor” (1972). International Compressor Engineering Conference. Paper 33. http://docs.lib.purdue.edu/icec/33. |
Number | Date | Country | |
---|---|---|---|
20180283555 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62501295 | May 2017 | US | |
62491629 | Apr 2017 | US | |
62479013 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15938427 | Mar 2018 | US |
Child | 15941397 | US | |
Parent | 15938130 | Mar 2018 | US |
Child | 15938427 | US | |
Parent | 15937293 | Mar 2018 | US |
Child | 15938130 | US | |
Parent | 15936713 | Mar 2018 | US |
Child | 15937293 | US | |
Parent | 15934742 | Mar 2018 | US |
Child | 15936713 | US | |
Parent | 15934625 | Mar 2018 | US |
Child | 15934742 | US | |
Parent | 15903636 | Feb 2018 | US |
Child | 15934625 | US |