The present disclosure relates generally to resetting a circuit breaker following a trip event, and, more particularly, to a mechanism for resetting a reset lever in pressure trip molded case circuit breaker following a trip event that fouls an internal surface of the breaker.
A molded case circuit breaker (MCCB) can incorporate a pressure sensitive trip mechanism, sometimes called a piston trip, to detect over current events and trip the breaker. Internal to the MCCB, a chamber houses two electrical contacts that are configured to separate due to electrodynamic forces generated when the current flowing through the contacts is excessively high. When the contacts separate, an arc occurs as the air between the contacts ionizes and electrical energy arcs between the contacts. The energy released during the arc heats the gas in the chamber and increases the pressure within the chamber. The chamber housing the contacts is sometimes referred to as a breaking unit. The breaking unit is in fluid communication with a piston trip pressure sensitive unit, which is another chamber that includes a movable surface that moves in response to the pressure increase communicated from the breaking unit. In some breakers, the movable surface is a piston moving within a cylinder. In others, the movable surface is one side of a lever that pivots when the pressure increases. The movement of the movable surface then activates a trip mechanism through a mechanical linkage. The trip mechanism can be configured to break multiple poles of an electrical circuit simultaneously. Such an MCCB generally incorporates exhaust vents for venting the high pressure gas following the activation of the trip mechanism.
An MCCB incorporating a pressure sensitive trip mechanism (also referred to as a piston trip module) generally incorporates a bias for biasing the movable surface in a normal operating position. A piston trip module incorporating a bias is disclosed in U.S. Pat. No. 5,298,874 to Morel et al. A spring can be used to bias the movable surface. During the arc, the movable surface moves against the force of the bias to activate the trip mechanism due to the high pressure created by the heated gas. Once the trip mechanism is activated, the arc halts. With the gasses no longer heated, the pressure in the breaking unit returns to normal. The return of normal pressure may be assisted by venting the heated gas into exhaust vents. After the pressure has stabilized, the bias causes the movable surface to return to the normal operating position.
Occasionally, however, the interior surface that the movable surface moves along is damaged during the arc fault event by hot gasses and molten metallic debris generated during the arc. Hot gasses and debris can become imbedded in the interior surface or otherwise foul the interior surface. The damage to the interior surface can impede the movement of the movable surface as it is returned to its normal operating position under the force of the bias. When the force of the bias is unable to return the movable surface to its normal operating position due to the fouled interior surface, the MCCB may trip while operating.
Provided herein is an apparatus for resetting a piston trip incorporated in an electrical circuit breaker. The apparatus provides for transferring motion from a manual reset lever, also called a breaker handle, of the electrical circuit breaker to a reset lever of the piston trip. The breaker handle can be a hand-driven lever of the electrical circuit breaker that is used to reset a trip mechanism within the breaker following a trip event. The reset lever of the piston trip can be a component mechanically linked to a movable surface within the piston trip. A mechanical coupling is achieved between the breaker handle and the movable surface through the use of a connecting element. The connecting element links the motion of the breaker handle to the motion of the movable surface. During a reset operation of the electrical circuit breaker, the breaker handle is moved to an off position. Moving the breaker handle to the off position causes a component mechanically linked to the breaker handle to push against the connecting element and the connecting element to push against the component mechanically linked to the movable surface.
According to a configuration of the present disclosure, the connecting element can be a lever generally shaped like a wedge that is configured to rotate about a pivot. The lever can have a first surface that contacts the component mechanically linked to the breaker handle. The lever can have a second surface that contacts the component mechanically linked to the movable surface. Additionally, the connecting element can have a first and second nodule useful for retaining the connecting element in a desirable position and for ensuring that the connecting element is placed in its correct position during an assembly operation of the electrical circuit breaker. An electrical circuit breaker utilizing the connecting element disclosed herein to mechanically link the motion of the breaker handle to the motion of the movable surface can advantageously avoid tripping while operating. The connecting element ensures that the movable surface is properly returned to its reset position following a trip event.
The foregoing and additional aspects and implementations of the present disclosure will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments and/or aspects, which is made with reference to the drawings, a brief description of which is provided next.
The foregoing and other advantages of the present disclosure will become apparent upon reading the following detailed description and upon reference to the drawings.
The functional block diagram 160 includes a trip mechanism 130. The trip mechanism 130 is activated by a trip component 135 mechanically linked to the movable surface 120. The trip mechanism 130 can be a latch that is activated by making contact with the trip component 135. The trip component 135 can be a rod, a lever, or any other part suitable for providing a mechanical link between the trip mechanism 130 and the movable surface 120. The trip component 135 can be permanently affixed to the movable surface 120, and can be integrally formed with the movable surface 120. The functional block diagram 160 further includes a breaker handle 140 and a first component 145 mechanically linked to the breaker handle 140. The first component 145 can be permanently connected to the breaker handle 140 or can be positioned such that a movement of the breaker handle 140 causes a part permanently affixed to the breaker handle 140 to contact the first component 145. Additionally or alternatively, the first component 145 can be linked to the breaker handle 140 through a mechanical connection including a rod or a lever.
The functional block diagram 160 further includes a connecting element 100 for linking the motion of the breaker handle 140 to the movable surface 120. The connecting element 100 can be a rod or a lever which provides a mechanical coupling between the first component 145 mechanically linked to the breaker handle 140 and a second component 125 mechanically linked to the movable surface 120. In a configuration, the trip component 135 can be implemented as the same part as the second component 125, so long as the part provides a mechanical connection between the movable surface 120 and the trip mechanism 130, and the movable surface 120 and the connecting element 100.
During operation of the piston trip in a normal operating state illustrated by the functional block diagram 160, current flows through the pair of electrical contacts 112. The current does not exceed a threshold and the contacts do not separate. Because the contacts do not separate, an arcing event does not occur, and a pressure is not generated within the chamber. Because a pressure is not generated to oppose the force of the bias 122, the movable surface 120 remains in the first position shown and the trip component 135 is not moved to activate the tripping mechanism 130.
The movable surface 120 is shown in the second position in the block diagram 161. The chamber 110 has a larger volume when the movable surface 120 is in the second position than when the movable surface 120 is in the first position. Similarly, the chamber 110 has a smaller volume when the movable surface 120 is in the first position than when the movable surface 120 is in the second position. Said another way, the volume of the chamber 110 is larger responsive to the movable surface 120 being in the second position than responsive to the movable surface 120 being in the first position. As a result of the movement of the movable surface 120, the trip component 135 mechanically linked to the movable surface 120 activates the trip mechanism 130. The activation of the trip mechanism 130 causes current to stop flowing to the separated pair of electrical contacts 114, and thereby halts the release of the arcing energy 116. While the functional block diagram 161 illustrates a single pair of separated electrical contacts 114, the activation of the trip mechanism 130 can trip all poles of a multipole breaker to halt current flowing to multiple poles simultaneously. Once the arcing energy 116 is no longer being released, the increased pressure 118 and temperature within the chamber 110 dissipate and the movable surface 120 returns to the first position under the influence of the bias 122.
An energized electrical circuit breaker incorporating the piston trip shown in the functional block diagram 162 trips while operating unless the movable surface 120 is forced back to the first position. The connecting element 100 enables the movable surface to be returned to the first position and thereby avoid problems associated with tripping while operating. The connecting element 100 provides a mechanical connection between the first component 145 mechanically linked to the breaker handle and the second component 125 mechanically linked to the movable surface 120. The operation of the connecting element 100 resetting the piston trip by moving the movable surface 120 is illustrated in
In operation of the piston trip illustrated by the functional block diagram 163, the breaker handle 140 is moved to the off position following a trip event. The movement of the breaker handle 140 to the off position can be effected by, for example, a user manipulating the breaker handle 140. In an example configuration, the movement of the breaker handle 140 causes the first component 145 to mechanically couple to the connecting element 100 by contacting the first surface 101. The contact drives the second surface 102 of the connecting element 100 to contact the second component 125 and thereby mechanically couple to the second component 125. The contact urges the second component 125 to move the movable surface 120 to the reset position through the mechanical linkage between the movable surface 120 and the second component 125. Through the mechanical coupling of the connecting element 100 to the first component 145 and the second component 125, the motion of the breaker handle 140 is linked to the motion of the movable surface 120. In a configuration, the motion of the breaker handle 140 forces the movable surface 120 to return to the first position, even when its motion is impeded by debris remaining from an arcing event. In a configuration, the motion of the breaker handle 140 provides a force to overcome an impediment on the motion of the movable surface 120.
While a configuration of the connecting element 100 is described in which the connecting element 100 has a first surface 101 making contact with components mechanically linked to the breaker handle 140, and a second surface 102 making contact with the movable surface 120, the present disclosure is not so limited. The connecting element 100 can be a protrusion on a portion of the first component 145 mechanically linked to the breaker handle 140. Similarly, the connecting element 100 can be a protrusion on a portion of the second component 125 mechanically linked to the movable surface 120. The connecting element 100 can also be a separate component that is not permanently mechanically linked to any other components of the piston trip. For example, the connecting element 100 can operate by passively transferring a force applied to the first surface 101 of the connecting element 100 to the second surface 102 of the connecting element 100. A configuration where the connecting element 100 is a separate component can offer benefits of allowing the connecting element to be incorporated with existing hardware used in the electrical circuit breaker without necessitating redesigning any existing components. The connecting element 100 can be created from metal or plastic, and can be formed by conventional methods for creating parts to be used in an electrical circuit breaker.
The functional block diagrams illustrated in
In operation of the piston trip 270, an over current flowing through the electrical contacts causes the electrical contacts to separate and an arcing energy to be released within the breaking unit, which is in fluid communication with the chamber 210. The released arcing energy heats gas within the chamber 210 and increases the pressure within the chamber 210. The increased pressure pushes the movable surface 220 against the force of the bias 222 to a second position. The movement of the movable surface 220 causes the hammer component 236 to move and the tip 237 activates the trip mechanism 230. Activating the trip mechanism 230 trips the circuit, which halts the release of the arcing energy within the breaking unit. As the increased pressure in the chamber 210 dissipates, the movable surface 220 moves back to the first position within the sheath 221, unless the motion of the movable surface 220 is impeded by imbedded debris released during the arcing event. If the motion of the movable surface 220 is impeded, the movable surface 220 can be forced back into position by providing a mechanical linkage between a breaker handle and the movable surface 220 as illustrated in
The piston trip 270 is enclosed within a cover 271. The bias 222 is visible through an opening in the cover 271. The hammer component 236 connected to the movable surface 220 extends vertically from the cover 271. The tip 237 of the hammer component 236 is positioned to activate the trip mechanism 230 by moving against the force of the bias 222. The angled surface 238 of the hammer component 236 is positioned to interface with the connecting element 200. The connecting element 200 provides a mechanical linkage between the hammer component 236 connected to the movable surface 220 and the first component 245 mechanically linked to the breaker handle 240.
In a configuration, the connecting element 200 is a lever rotating about a pivot 207. The connecting element 200 is in a generally triangular or wedge shape, with the pivot 207 proximate to one corner of the connecting element 200. The connecting element 200 has a first surface 201 and a second surface 202. The first surface 201 is oriented generally along a direction extending radially from the pivot 207. The second surface 202 is also oriented generally along a direction extending radially from the pivot 207. The first surface 201 is positioned to contact the first component 245 mechanically linked to the breaker handle 240 during movement of the breaker handle 240. The second surface 202 is positioned to contact the angled surface 238 of the hammer component 236. The connecting element 200 further includes a first nodule 203 located proximate the first surface 201 and a second nodule 204 located proximate the second surface 202. The first nodule 203 and the second nodule 204 retain the connecting element 200 in its position by interfacing with a radial feature 208. The radial feature 208 can be a portion of a spring extending from the pivot 207. The first and second nodules (203, 204) prevent the connecting element 200 from rotating in either direction past the point where the nodules (203, 204) interface with the radial feature 208. The nodules (203, 204) can also advantageously ensure that the connecting element 200 is correctly installed during assembly. The nodules (203, 204) advantageously ensure that the connecting element 200 is designed for manufacturing, because installing the connecting element 200 with the nodules (203, 204) facing inward, rather than outward, can result in the electrical circuit breaker binding during a testing operation of the breaker handle 240.
In a reset operation of the electrical circuit breaker 260, the breaker handle 240 is rotated in a counter-clockwise direction about pivot 243. The rotation of the breaker handle 240 drives the cradle 242 into the first component 245. The connection between the cradle 242 and the first component 245 urges the first component 245 to rotate clockwise about the pivot 246. The first component 245 is rotated to connect to the first surface 201 of the connecting element 200. The connection between the first component 245 and the connecting element 200 urges the connecting element 200 to rotate counter-clockwise about pivot 207. The rotation of the connecting element 200 drives the second surface 202 of the connecting element 200 to connect with the angled surface 238 of the hammer component 236, which completes the mechanical linkage between the breaker handle 240 and the movable surface 220. Continued rotation of the breaker handle 240 drives the hammer component 236 in the same direction as it is being urged by the bias 222, and moves the movable surface 220 to the first position within the sheath 221.
While particular implementations and applications of the present disclosure have been illustrated and described, it is to be understood that the present disclosure is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4617545 | Link | Oct 1986 | A |
5103198 | Morel et al. | Apr 1992 | A |
5298874 | Morel et al. | Mar 1994 | A |
6369340 | Castonguay et al. | Apr 2002 | B1 |
6373357 | Douville et al. | Apr 2002 | B1 |
6542057 | Douville et al. | Apr 2003 | B2 |
6919785 | Douville et al. | Jul 2005 | B2 |
6995640 | Harmon et al. | Feb 2006 | B2 |
20040239458 | Harmon et al. | Dec 2004 | A1 |
20090179011 | Asokan et al. | Jul 2009 | A1 |
Entry |
---|
International Search Report for International Application No. PCT/US2011/065320, dated Mar. 28, 2012, 3 pages. |
Written Opinion for International Application No. PCT/US2011/065320, dated Mar. 28, 2012, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20120168292 A1 | Jul 2012 | US |