1. Field of the Invention
This invention relates generally to pistons for internal combustion engines, and methods for manufacturing the same.
2. Related Art
Pistons used in internal combustion engines, such as heavy duty diesel pistons, are exposed to extremely high temperatures during operation, especially along the upper crown of the piston. Therefore, to moderate temperatures, the pistons are typically designed with a cooling gallery beneath the upper crown, and cooling oil is sprayed into the cooling gallery as the piston reciprocates along a cylinder bore of the engine. The oil flows along the inner surface of the upper crown and dissipates heat away from the upper crown. However, to control the piston temperature during operation, a high flow of oil must be maintained constantly. In addition, the oil degrades over time due to the high temperatures of the internal combustion engine, and the oil must be changed periodically to maintain engine life.
One aspect of the invention provides a piston for an internal combustion engine. The piston comprises a body portion formed of a metal material. The body portion includes an upper crown and a sealed cooling gallery extending along least a portion of the upper crown. A metal-containing composition is disposed in the sealed cooling gallery. The metal-containing composition includes a base material having a melting temperature less than 181° C. and a plurality of metal particles having a thermal conductivity greater than the thermal conductivity of the base material.
Another aspect of the invention provides a method of manufacturing a piston for an internal combustion engine. The method comprises the steps of feeding the metal-containing composition into the cooling gallery; and sealing the cooling gallery.
During high temperature operation, the metal-containing composition flows throughout the sealed cooling gallery. Typically, the base material is in liquid form and carries the solid metal particles along the inner surface of the upper crown to remove heat therefrom. The metal-containing composition does not degrade due to high temperatures during the lifetime of the engine, and no coking of the cooling gallery occurs. The metal-containing composition functions as a coolant, and the higher heat transfer rate obtained from the metal-containing composition precludes oxidation and consequent erosion. In addition, the metal-containing composition can re-distribute heat flow and thus reduce carbon deposits along the outer surface of the upper crown, and can also reduce degradation of any lubricant oil used along the outer surface of the upper crown. The advantages provided by the metal-containing composition can also extend the time between service intervals of the engine.
In addition to the above, such a cooling method can be tuned to specific needs and could even deliberately induce a uniformly higher temperature along the top of the piston. This would favorably affect engine thermodynamics and provide additional heat in the exhaust for use by other appliances.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, an exemplary piston 20 for an internal combustion engine is generally shown in
The exemplary piston 20 of
The upper crown 32 of the piston 20 includes an outer surface 40 and an oppositely facing inner surface 42. The outer surface 40 of the upper crown 32 presents a bowl-shaped configuration at the upper end 28 which is directly exposed to hot combustion gases in the cylinder bore during operation. The cooling gallery 22 extends along least a portion of the inner surface 42 of the upper crown 32, opposite the bowl-shaped configuration, so that the metal-containing composition 24 contained therein can dissipate heat away from the hot bowl-shaped configuration during operation. In the exemplary embodiment, the sealed cooling gallery 22 extends circumferentially around the center axis A, beneath a bowl rim 70 of the upper crown 32.
As shown in
The body portion 26 of the piston 20 also includes the lower crown 34 extending from the upper crown 32 toward the lower end 30. The lower crown 34 presents the outer surface 40 including at least one ring groove 52 for holding the piston rings 54. The lower crown 34 also includes the inner surface 42 facing opposite the outer surface 40. The lower crown 34 includes a second outer rib 48 aligned with and connected to the first outer rib 44 of the upper crown 32, and a second inner rib 50 aligned with and connected to the first inner rib 46 of the upper crown 32. The second ribs 48, 50 extend circumferentially around the center axis A between the upper end 28 and the lower end 30 and are spaced from one another by the inner surface 42 of the lower crown 34. Thus, as shown in
As shown in
The body portion 26 of the piston 20 also includes the pair of pin bosses 36 depending from the lower crown 34 and presenting a pair of laterally spaced pin bores 64 extending perpendicular to the center axis A. The body portion 26 also includes the skirt 38 depending from the lower crown 34. The skirt 38 is joined laterally to the pin bosses 36 and spaces the pin bosses 36 from one another. The outer surface 40 of the skirt 38 is convex for cooperation with the cylinder bore. Although the piston 20 shown in
As alluded to above, the metal-containing composition 24 has a high thermal conductivity for dissipating heat away from the hot upper crown 32 during operation in the internal combustion engine. The thermal conductivity of the metal-containing composition 24, measured in watts per meter-kelvin (W/m·K), ranges from 5 to 1000 times greater than the thermal conductivity of standard cooling oil. In one embodiment, the metal-containing composition 24 has a thermal conductivity of at least 100 W/m·K. The metal-containing composition 24 typically fills 20 vol. % to 50 vol. % of the cooling gallery 22, based on the total volume of the cooling gallery 22. In one exemplary embodiment, the metal-containing composition 24 fills 20 vol. % to 30 vol. % of the cooling gallery 22. Thus, during operation of the internal combustion engine, the metal-containing composition 24 flows throughout the cooling gallery 22 and dissipates heat away from the upper and lower crowns 32, 34 as the piston 20 reciprocates in the cylinder bore.
The metal-containing composition 24 includes a plurality of metal particles 66 dispersed throughout a base material 68. The base material 68 is typically present in an amount of 50 vol. % to 99 vol. %, based on the total volume of the metal-containing composition 24. In one embodiment, the base material 68 is present in an amount of 70 vol. % to 90 vol. %, based on the total volume of the metal-containing composition 24. In another embodiment, the base material 68 is present in an amount of 75 vol. %, based on the total volume of the metal-containing composition 24. The base material 68 typically has a thermal conductivity of 85 to 141 W/(m·K) and a melting temperature less than 181° C., and thus is liquid at temperatures of 181° C. and above.
As alluded to above, the base material 68 typically consists of oil, such as silicone oil. The base material 68 could alternatively comprise another liquid phase that is equally stable at high temperatures. In another embodiment, the base material 68 comprises one or more alkali metals. Alkali metals are elements found in Group 1 of the Periodic Table and include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), francium (Fr), and ununennium (Uue). The alkali metals can be provided as individual elements or alloys, such as NaK. The alkali metals typically have a thermal conductivity of about 85 to 141 W/(m·K), which is much higher than the thermal conductivity of lubricant oils. For comparison purposes, lubricant oils have a thermal conductivity around 0.15 to 0.20 W/(m·K). The high thermal conductivity of alkali metals allows them to effectively transfer heat away from the upper and lower crowns 32, 34. The alkali metals also typically have a melting temperature of about 63 to 181° C. Thus, the alkali metals are provided as a solid at room temperature and transform to a liquid when exposed to temperatures higher than their melting temperature during operation of the internal combustion engine. For example, sodium has a thermal conductivity of about 141 W/(m·K) and a melting temperature of about 98° C.; potassium has a thermal conductivity of about 102 W/(m·K) and a melting temperature of about 63° C.; and lithium has a thermal conductivity of about 85 W/(m·K) and a melting temperature of about 181° C. The alkali metals may be highly reactive and thus the outer cooling gallery 22 should be securely sealed.
The metal particles 66 of the metal-containing composition 24 are dispersed throughout the base material 68. The metal particles 66 have a thermal conductivity and a melting temperature greater than the thermal conductivity and the melting temperature of the base material 68. Typically, the metal particles 66 have a melting temperature greater than 181° C. and a thermal conductivity greater than 200 W/(m·K). Thus, the metal particles 66 remain solid and suspended throughout the liquid base material 68 when exposed to high temperatures during operation of the internal combustion engine. Thus, the solid metal particles 66 can provide exceptional heat absorption and dissipation while the liquid base material 68 provides excellent thermal contact. The metal particles 66 typically consist of one or more elements selected from the group consisting of copper (Cu), aluminum (Al), beryllium (Be), tungsten (W), gold (Au), silver (Ag), and magnesium (Mg). As alluded to above, in one exemplary embodiment, the metal-containing composition 24 includes the copper particles suspended in the silicone oil. Alternatively, the metal-containing composition 24 includes the copper particles suspended in the blend of alkali metals.
The metal-containing composition 24 includes the metal particles 66 in an amount of 1 vol. % to 50 vol. %, based on the total volume of the metal-containing composition 24. In one embodiment, the metal particles 66 are present in an amount of 10 vol. % to 30 vol. %, based on the total volume of the metal-containing composition 24. In yet another embodiment, the metal particles 66 are present in an amount of 25 vol. %, based on the total volume of the metal-containing composition 24.
The metal particles 66 typically have a particle size less than 149 microns to less than 25 microns (−100 to −550 mesh), or less than 44 microns (−325 mesh). All of the metal particles can have the same size particle, but typically the metal particles have a distribution of particle sizes. For example, 50% by volume of the metal particles can have a particle size of −100 mesh to +400 mesh and 50% by volume of the metal particles can have a particle size of −400 mesh. The metal particles 66 can also have various different structures. For example, the metal particles 66 could be atomized particles, such as those formed by water atomization or gas atomization. Alternatively, the metal particles 66 could be in the form of a strand, sponge, or foam. The metal particles 66 may also be recovered from a waste stream during the production process of other objects, such as brake parts.
The piston 20 including the high thermal conductivity metal-containing composition 24 in the outer cooling gallery 22 can provide numerous advantages. During operation of the internal combustion engine, the base material 68, such as the oil or the alkali metal, is in a liquid form, while the metal particles 66 remain solid and are suspended in the liquid base material 68. The liquid base material 68 carries the solid metal particles 66 along the inner surfaces 42 of upper and lower crowns 32, 34, throughout the cooling gallery 22, and thus removes heat from the upper crown 32 and lower crown 34. Furthermore, the metal-containing composition 24 does not degrade due to high temperatures during the lifetime of the engine, and no coking of the cooling gallery 22 occurs. The re-distribution of heat flow towards the ring grooves 52 also reduces carbon deposits along the outer surface 40, such as on the piston lands, and reduces degradation of any lubricant oil used along the outer surface 40. These advantages can extend the time between service intervals of the engine. In addition, the absence of carbon build up on the outer surface 40 of the piston 20 impedes cylinder liner bore polishing and consequently maintains oil consumption under control. Another beneficial characteristic that results from cooling the piston 20 with the metal-containing composition 24 in the cooling gallery 22 is the absence of carbon build up in the first (uppermost) ring groove 52. This obviates the possibility of carbon jacking of the compression ring and consequent ring seizure and/or ring sticking, which are both deleterious to the performance of the piston 20.
Another aspect of the invention provides a method of manufacturing a piston 20 for an internal combustion engine, comprising the steps of feeding the metal-containing composition 24 into the cooling gallery 22, and sealing the cooling gallery 22. Various different methods can be used to form the piston 20 with the cooling gallery 22. However, according to one exemplary embodiment, the method includes forming the upper crown 32 and the lower crown 34, aligning the inner ribs 46, 50 and outer ribs 44, 48 of the upper and lower crowns 32, 34 longitudinally, and welding the ribs 44, 46, 48, 50 of the upper and lower crowns 32, 34 together to form the cooling chamber 62 and cooling gallery 22 therebetween, as shown in
The method further includes feeding the metal-containing composition 24 through the opening 56 and into the cooling gallery 22 generally under an inert, dry atmosphere, typically nitrogen or argon. During the feeding step, the metal-containing composition 24 can be solid, liquid, or a mixture of solid particles and liquid. The metal particles 66 are typically solid during the feeding step, but the base material 68 can be solid or liquid. For example, when the metal-containing composition 24 comprises the colloid composition, the oil acts as a carrier for the solid metal particles 66, and the solid metal particles 66 are dispersed throughout the oil and poured into the opening 56 of the upper crown 32 or lower crown 34. However, when the base material 68 comprises the alkali metals, the method can include melting the alkali metals to provide a carrier, such that the metal particles 66 are dispersed throughout the melted alkali metals. Alternatively, the alkali metals can also be in the form of solid particles and blended with the solid metal particles 66. This mixture of solid particles can also be poured into the opening 56 of the upper crown 32 or lower crown 34. The solid alkali metal particles 66 transition to a liquid and provide a carrier for the solid metal particles 66 when exposed to the high temperatures during operation of the internal combustion engine.
After the metal-containing composition 24 is fed into the cooling gallery 22, the method includes sealing the opening 56 to the cooling gallery 22 while the piston 20 is still disposed in the inert atmosphere. The sealing step typically includes threading and tightening the plug 58 in the opening 56, and then applying the adhesive to the plug 58, such as a high temperature epoxy composition. In another embodiment, the opening 56 can be sealed by press fitting the plug 58 in the opening 56, which reduces production time. In yet another embodiment, the plug 58 can alternately be sealed by maintaining the piston 20 in the inert atmosphere, and then tungsten inert gas (TIG) welding or laser welding the plug 58 to the upper crown 32. Brazing and shrink-fit plugs are alternative ways also contemplated.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/721,682, filed Nov. 2, 2012, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
711606 | White | Oct 1902 | A |
1373291 | Betker | Mar 1921 | A |
1678957 | Philipp | Jul 1928 | A |
1878566 | Woolson | Sep 1932 | A |
1905582 | Gazda | Apr 1933 | A |
1953109 | Heron | Apr 1934 | A |
2028434 | Bernard | Jan 1936 | A |
2126306 | Bernard | Aug 1938 | A |
2126627 | Fiedler | Aug 1938 | A |
2153501 | Harper, Jr. | Apr 1939 | A |
2155383 | Carr | Apr 1939 | A |
2168103 | Nicolle | Aug 1939 | A |
2537174 | Townhill | Jan 1951 | A |
2711159 | Nallinger | Jun 1955 | A |
3066002 | Rudkin, Jr. | Nov 1962 | A |
3485143 | Canady | Dec 1969 | A |
3545341 | Fischer | Dec 1970 | A |
3616729 | Fischer | Nov 1971 | A |
4546048 | Guenther | Oct 1985 | A |
7162990 | Ioja et al. | Jan 2007 | B1 |
7549368 | Heidrich et al. | Jun 2009 | B2 |
7637241 | Styron | Dec 2009 | B2 |
8863718 | Rebello et al. | Oct 2014 | B2 |
20050087153 | Moon | Apr 2005 | A1 |
20070079775 | Lin et al. | Apr 2007 | A1 |
20100275873 | Gniesmer et al. | Nov 2010 | A1 |
20130032103 | Azevedo | Feb 2013 | A1 |
20130047948 | Heuschmann | Feb 2013 | A1 |
20130146017 | Muscas et al. | Jun 2013 | A1 |
20130206084 | Azevedo et al. | Aug 2013 | A1 |
20130312695 | Bischofberger | Nov 2013 | A1 |
20140083390 | Azevedo et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
263055 | Dec 1926 | GB |
62096762 | Apr 1987 | JP |
2013119892 | Aug 2013 | WO |
Entry |
---|
International Search Report mailed Mar. 25, 2014 (PCT/US2013/068206). |
Number | Date | Country | |
---|---|---|---|
20140123930 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61721682 | Nov 2012 | US |