1. Technical Field
This invention relates generally to pistons for internal combustion engines, and methods of manufacturing the pistons.
2. Related Art
Steel pistons of various designs are used in a diesel combustion system which sharply releases energy from a pre-mixture of fuel-air at the end of an ignition delay period (ID). An impulsive noise signature follows which is objectionable to human hearing and is manifested as a characteristic diesel “knock.” In step with this initial energy release, a period, typically milliseconds, of a high in-cylinder temperature occurs, such as 2000-3000° C. The high in-cylinder temperature produces high NOx levels, which engine manufacturers prefer to avoid.
One aspect of the invention provides a piston comprising an upper crown wall presenting an upper combustion surface. A coating is disposed on the upper combustion surface. The coating includes a thermal barrier layer, a sealant layer, and a catalytic layer. The thermal barrier layer is disposed on the upper combustion surface and includes a ceramic composition. The sealant layer is disposed on the thermal barrier layer and includes metal. The catalytic layer disposed is disposed on the sealant layer, and the catalytic layer includes at least one of platinum, ruthenium, rhodium, palladium, osmium, and iridium.
Another aspect of the invention provides a method of manufacturing a piston. The method includes disposing a coating on an upper combustion surface of an upper crown wall. The coating includes a thermal barrier layer, a sealant layer, and a catalytic layer. The thermal barrier layer is disposed on the upper combustion surface and includes a ceramic composition. The sealant layer is disposed on the thermal barrier layer and includes metal. The catalytic layer disposed is disposed on the sealant layer, and the catalytic layer includes at least one of platinum, ruthenium, rhodium, palladium, osmium, and iridium.
These and other aspects, features and advantages of the invention will become more readily accompanying drawings, in which:
The piston 10 according to the example embodiment of
The body portion, being made of steel or another metal, is strong and durable to meet the high performance demands, i.e. increased temperature and compression loads, of modern day high performance internal combustion engines. The steel material used to construct the body can be an alloy such as the SAE 4140 grade or different, depending on the requirements of the piston 10 in the particular engine application. Due to the piston 10 being galleryless, the weight and compression height of the piston 10 is minimized, thereby allowing an engine in which the piston 10 is deployed to achieve a reduced weight and to be made more compact. Further yet, even though the piston 10 is galleryless, the piston 10 can be sufficiently cooled during use to withstand the most severe operating temperatures.
The body portion of the piston 10 has an upper head or top section providing an upper crown wall 12. An example of the upper crown wall 12 is shown in
The piston 10 typically includes a pair of pin bosses 24 depending generally from the undercrown surface 32, inwardly of the ring belt 16. The pin bosses 24 define a pair of laterally spaced pin bores 26 which are vertically spaced from the undercrown surface 32. The piston 10 also includes a pair of skirt panels 28 depending from the ring belt 16 and located diametrically opposite one another. The skirt panels 28 are coupled to the pin bosses 24 by struts 30.
The undercrown surface 32 of the piston 10 of
The undercrown surface 32 of the piston 10 of
The undercrown surface 32 of the example galleryless piston 10 is provided by several regions of the piston 10 including an inner undercrown region 34 and outer pockets 36 which are shown in
The piston 10 according to the example embodiment of
The piston of
Unlike the piston of
In the example embodiment of
To reduce heat flow to the upper crown wall 12, foster early combustion, and thus reduce undesirable diesel “knock,” a multilayer coating 38 is applied to the upper combustion surface 14 of the piston 10 and confers thermal insulation to the upper crown wall 12. The coating 38 includes a bond layer 40 applied to the upper combustion surface 14, a thermal barrier layer 42 disposed on the bond layer 40 and connected to the upper combustion surface 14 by the bond layer 40, a sealant layer 44 disposed on the thermal barrier layer 42, and a catalytic layer 46 disposed or deposited on the sealant layer 44.
As shown in
The multilayer coating 38 next includes the thermal barrier layer 42 disposed directly on the bond layer 40 and anchored to the steel upper combustion surface 14 by the bond layer 40. The thermal barrier layer 42 includes or consists of a ceramic composition. In the example embodiment, the thermal barrier layer 42 includes some form partially stabilized zirconia, preferably ceria stabilized zirconia (CSZ). The thermal barrier layer 42 is typically applied to a thickness of 150 to 350 microns by thermal spraying.
The sealant layer 44 is disposed directly on the thermal barrier layer 42 and closes the pores inherent to the ceramic formulation and prevents absorption, desorption, and permeation of combustion gases and fuel through the porous ceramic. The composition of the sealant layer 44 includes or consists of metal and is typically similar to or the same as the bond layer 40. According to the example embodiment, the sealant layer 44 is formed of a nickel-based composition, preferably a superalloy such as nickel chromium aluminum yttrium (NiCrAlY) and/or cobalt nickel chromium aluminum yttrium (CoNiCrAlY). The sealant layer 44 can produce some catalytic activity. The sealant layer 44 is preferably applied over the entire upper combustion surface 14 and over an entire uppermost surface of the thermal barrier layer 42 facing the sealant layer 44 to perform its sealing action. The sealant layer 44 is typically applied to a thickness of 50 to 100 microns by thermal spraying. The nickel-based sealant layer 44 can also be deposited by an electroless nickel deposition process. The sealant layer 44 is typically applied to a thickness of 50 to 100 microns by thermal spraying, or to a thickness of 5 to 50 microns by electroless nickel deposition.
The catalytic layer 46 of the multilayer coating 38 is deposited directly on top of the metallic sealant layer 44 and promotes combustion through a catalyzed reaction, or catalysis. The catalytic layer 46 includes or consists of at least one or more of the platinum group metals, including platinum, ruthenium, rhodium, palladium, osmium, and iridium. The at least one platinum group metal is present in an amount of at least 10 weight percent, based on the total weight of the catalytic layer. The catalytic layer 46 is typically applied separately as a very thin layer ranging from 10 to 1000 nm. The catalytic layer 46 can be electrodeposited from a solution or applied by a physical vapor deposition (PVD) process. The catalytic layer 46 can either be disposed over the whole upper combustion surface 14 or in selective regions only, such as in line with fuel plumes, at the periphery of the flame front, or around the combustion bowl edge.
The total thickness of the multilayer coating 38 is preferably approximately 500 microns or less, which allows it to survive thermal and mechanical loads experienced in the engine. The multilayer coating 38 confers thermal insulation and adiabaticity to the upper crown wall 12 of the piston 10 and can foster early combustion by catalytic action, given that the in cylinder environment of a modern diesel engine is characterized by high temperatures, for example 800-900° C. bulk gas average temperature, and high pressure, such as 220-280 bar. The presence of the one or more platinum group metal can lower the activation energy for immediate fuel cracking and combustion. Thus, the ignition delay can be reduced substantially and with it the pre-mixed combustion phase. What remains is the diffusion combustion regime, i.e., with immediate controlled burning of fuel as it enters the combustion environment. This phase can be regulated by the electronic control module on the engine. Therefore, the objectionable combustion noise can be reduced, and the HC emission can be lowered due to no pockets of stagnant mixture. In addition, lower peak temperatures can be achieved which decreases NOx. Other advantages can arise by decreasing heat lost to the cooling system, so that the residual heat becomes available in the exhaust stream for the energy recovery via a bottoming device. Furthermore, given the severe environment inside the combustion chamber and the chemical action of the catalyst layer 46, sprayed fuel can burn immediately, by passing most of the pre-mixed stage in favor of a diffusion type burning. As stated above, diffusion burning is controllable by the present generation of the engine's electronic control unit (ECU).
Another aspect of the invention provides a method of manufacturing the piston 10 with the multilayer coating 38. The method includes applying the multilayer coating 38 to at least a portion of the upper combustion surface 14. The layers 40, 42, 44, 46 of the multi-layer coating 38 can be applied by various different methods. Typically, the bond layer 40, thermal barrier layer 42, and sealant layer 44 of the multi-layer coating 38 are applied separately by a thermal spray technique, such as wire arc spraying, plasma spraying, or high velocity oxygen fuel (HVOF) spraying. However, the sealant layer 44 and/or bond layer 40 could be electroless nickel deposited from appropriate baths. The catalyst layer 46 is typically electrodeposited from solution or applied by a physical vapor deposition (PVD) process.
The piston 10 is capable of reducing an ignition delay period to such an extent that mostly smooth diffusion burning remains and thus undesirable diesel “knock” is reduced. The piston 10 is also capable of reducing hydrocarbon emissions and providing more complete combustion. Other potential advantages include the use of less refined fuels, higher controlled exhaust temperatures for bottoming cycle energy recovery, and less fuel consumption.
Many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the claims. It is also contemplated that all features of all claims and of all embodiments can be combined with each other, so long as such combinations would not contradict one another.
This U.S. utility patent application claims priority to U.S. provisional patent application No. 62/309,055, filed Mar. 16, 2016, the contents of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62309055 | Mar 2016 | US |