This application claims priority to German Patent Application No. DE 10 2019 213 358.4, filed on Sep. 3, 2019, the contents of which is hereby incorporated by reference in its entirety.
The present invention relates to a piston for an internal combustion engine with a circumferential cooling duct. Moreover, the invention relates to a feed funnel for a piston of this type, and to a method for mounting a feed funnel of this type in a piston.
DE 10 2006 013 884 A1 has disclosed a piston of the generic type for an internal combustion engine, which piston has a piston head and a piston skirt, a circumferential cooling duct being configured between the piston head and the piston skirt. A feed funnel is likewise provided, via which cooling oil is fed into the cooling duct.
DE 33 38 419 A1 has disclosed a further piston for an internal combustion engine with a circumferential cooling duct and a feed opening, a feed funnel being arranged in the feed opening. Here, the feed funnel is screwed into the feed opening. This represents a considerable disadvantage, however, since an internal thread first of all has to be cut into the feed opening in order to mount the feed funnel. Moreover, the feed funnel has to have an external thread which is of complementary configuration with respect to it, which results in complex manufacture.
DE 10 2012 211 060 A1 has disclosed a further piston for an internal combustion engine, which further piston likewise has a screwed-in or pressed-in feed funnel in a feed opening of a cooling duct. It is also the case here that either a corresponding thread has to be provided, or else a corresponding fit accuracy, in order for it to be possible for a predefined press fit connection to be established.
DE 10 2009 056 922 B4 has disclosed a piston with a feed funnel for cooling oil in a cooling duct, the feed funnel being hooked in a joint region between two cooling duct covering parts.
The present invention is concerned with the problem of specifying at least one improved alternative embodiment for a piston of the generic type, which alternative embodiment provides, in particular, readily accessible and simple but nevertheless reliable mounting of a feed funnel in a feed opening for a cooling duct in a piston.
According to the invention, said problem is solved by way of the subject matter of the independent claim(s). Advantageous embodiments are the subject matter of the dependent claim(s).
The present invention is based on the general concept of fixing a feed funnel in a feed opening of a cooling duct of a piston by means of a simple blind rivet connection which is also accessible, in particular, from a single side, namely the underside of the piston. As a result, the fixing of the feed funnel by way of setting of the blind rivet connection is possible in an extremely simple manner, it being possible for the blind rivet connection to be configured as a conventional blind rivet connection or as a blind rivet nut connection. In particular, access from the cooling duct is not required as a result of a blind rivet connection of this type, with the result that the feed funnel can also be used in a cooling duct which is produced by way of a salt core and is subsequently drilled out through the feed opening. Fixing of this type of the feed funnel in the feed opening also represents an extremely inexpensive solution which, in particular, is considerably less expensive than, for example, welding or brazing of a feed funnel of this type in the feed opening.
In the case of one ongoing development of the solution according to the invention, the feed opening is configured as a bore in the piston, or the cooling duct is closed by means of a cooling duct covering, for example by means of a cooling duct plate, the feed opening being configured as a through opening in the cooling duct covering. It can already be seen from this list that the feed funnel which is fixed according to the invention in the feed opening by means of the blind rivet connection can be used regardless of the configuration of the piston and also regardless of the configuration, for example, of a cooling duct or a cooling duct covering. Thus, for example, the feed opening can be configured as a bore which is made retrospectively in the piston, it also being conceivable as an alternative that a feed opening of this type is provided as a through opening in the cooling duct covering.
As an alternative to this, it is also conceivable that the cooling duct is closed by means of a two-piece cooling duct covering with a first cooling duct covering part and a second cooling duct covering part, the feed opening being provided in this case at a joint of the two cooling duct covering parts. In this case, the feed opening can be produced particularly simply, for example by means of a corresponding punching process, in the case of which a semicircle is punched out on each cooling duct covering part, which semicircles together form the feed opening in the case of cooling duct covering parts which abut one another.
In the case of one ongoing development of the solution according to the invention, the blind rivet connection is configured as a blind rivet nut connection, the feed funnel having an annular collar and, at its end which faces away from a funnel, a first internal thread, a first upset region being provided between said first internal thread and the annular collar. Here, the blind rivet nut connection is a special form of blind rivet connection, in the case of which the blind rivet nut is first of all screwed onto a threaded mandrel of the blind rivet setting tool, and is subsequently plugged into the feed opening until it bears with its annular collar against an edge of the feed opening. Subsequently, the threaded mandrel is withdrawn and the upset region is bulged in the process, as a result of which an edge of the feed opening is clamped in firstly between the annular collar and the bulged upset region, and the feed funnel is fixed in the feed opening via this. Finally, the threaded mandrel is removed again from the first thread of the feed funnel by way of rotating of said threaded mandrel in the opposite direction, whereupon said feed funnel remains in a finally fixed state in the feed opening.
As an alternative, it goes without saying that it is also conceivable that the feed funnel is configured in the manner of a blind rivet, it then first of all being plugged into the feed opening for mounting purposes until it bears with its annular collar against the feed opening. Subsequently, the rivet mandrel is pulled until the upset region is bulged and the feed funnel is fixed in the feed opening via the blind rivet connection. In this case, the feed funnel would subsequently still have to be drilled through, which can likewise be produced simply in terms of manufacturing technology, however.
In the case of one ongoing development of the solution according to the invention, the feed funnel has an axial length L of 10 mm≤L≤35 mm, a length range of this type covering virtually all application variants. Furthermore, a funnel length LT can be varied between preferably 6 and 16 mm, as a result of which a different degree of oil catching of the feed funnel (oil catching funnel) can be achieved.
In addition or as an alternative, it can also be provided that the feed funnel has a maximum diameter Dmax of 10 mm≤Dmax≤14 mm. As a result, virtually all size ranges of common pistons can be covered. The greater the maximum diameter Dmax here, the more oil which can be collected, for example, and can be fed to the cooling duct.
In addition or as an alternative, it is also conceivable that the feed funnel has a standpipe internal diameter DSI of from approximately 2 to 8 mm. As a result, a sufficient supply of the cooling duct with oil is feasible.
Furthermore, the present invention is based on the general concept of configuring a feed funnel as a blind rivet or as a blind rivet nut, the blind rivet nut representing a special type of blind rivet. As a result, comparatively simple and nevertheless reliable mounting of the feed funnel in an associated feed opening of a cooling duct of a piston is possible, combined with the advantage that a feed funnel of this type can be fixed in the feed opening and can be mounted as a result from one side, that is to say, for example, the underside of the piston.
In the case of the advantageous development of the solution according to the invention, the feed funnel has an annular collar and, at its end which faces away from a funnel of the feed funnel, an internal thread, a first upset region being provided between the internal thread and the annular collar. In this case, the feed funnel is configured as a blind rivet nut. An embodiment of this type affords the great advantage that, after mounting of the feed funnel, the threaded mandrel of the blind rivet setting tool can be screwed out more simply and, as a result, the through opening can already be produced.
As an alternative, it is also conceivable that the blind rivet connection is configured as a blind rivet nut connection, and the feed funnel has an internal thread at its end which faces away from the funnel, a first and a second upset region lying between the funnel and the internal thread. In this case, therefore, the second upset region forms the annular collar which is formed in the above-described alternative embodiment. In this case, therefore, a threaded mandrel is screwed through the funnel into the thread at the free end of the feed funnel from the funnel, and is plugged through the feed opening on the piston in this state, in which it is screwed on the threaded mandrel. Subsequently, the threaded mandrel is either withdrawn axially, the feed funnel being held on the funnel or at another point via an abutment, for example the blind rivet setting tool, or the mandrel (threaded mandrel) bringing about upsetting of the feed funnel in the axial direction by way of rotation. A deformation of the upset regions which takes place one after another can be achieved by way of different stiffnesses of the two upset regions, for example a weaker stiffness of the second upset region in comparison with the first upset region, the two upset regions clamping in the feed funnel on/in the feed opening in the end. Subsequently, the threaded mandrel is screwed out and removed. A common feature here of the two embodiments is that rapid, reliable and simple fixing of the feed funnel in the feed opening is made possible in this way.
Furthermore, the present invention is based on the general concept of specifying a method for mounting a feed funnel in a piston, in the case of which method the feed funnel is first of all plugged with its end which faces away from a funnel of the feed funnel into a feed opening of the cooling duct of the piston, and the feed funnel is subsequently fixed in said feed opening by means of a blind rivet connection. As a result, simple and nevertheless at the same time reliable mounting or fixing of the feed funnel in the feed opening can take place.
Here, for example, a feed funnel which is configured as a blind rivet nut can be used, in the case of which feed funnel mounting in the feed opening takes place as follows: first of all, the feed funnel is screwed onto a threaded mandrel of a blind rivet setting tool, and is subsequently plugged into the feed opening of the piston until it bears with its annular collar against an edge of the feed opening. Subsequently, the threaded mandrel is withdrawn by means of the blind rivet setting tool, and an upset region of the feed funnel which lies between the annular collar and the internal thread is bulged, as a result of which a fixed clamped connection is produced between the feed funnel and the edge of the feed opening. Subsequently, the threaded mandrel is screwed out of the internal thread of the feed funnel. In this way, the feed funnel is attached in a finally fixed manner in the feed opening.
In the case of one alternative embodiment, it is also purely theoretically conceivable that the feed funnel is configured as a blind rivet, it then being plugged first of all with its rivet mandrel into the blind rivet setting tool for mounting purposes, and subsequently being inserted into the feed opening. The riveting mandrel is then pulled on until it breaks at a predetermined break point, and the at least one upset region is bulged. As a result, the feed funnel is fixed firmly in the feed opening via the blind rivet connection. Subsequently, a through opening still has to be produced, for example by means of drilling.
Further important features and advantages of the invention result from the subclaims, from the drawings and from the associated description of the figures on the basis of the drawings.
It goes without saying that the features which are mentioned in the above text and are still to be described in the following text can be used not only in the respective specified combination, but rather also in other combinations or on their own, without departing from the scope of the present invention.
Preferred exemplary embodiments of the invention are shown in the drawings and will be described in greater detail in the following description, identical reference numerals relating to identical or similar or functionally identical components.
In the drawings, in each case diagrammatically:
In accordance with
Here, the feed opening 4 can be configured as a bore in the piston 1, or else the cooling duct 3 is closed from below by means of a cooling duct covering 8, the feed opening 4 being configured as a through opening 7 in the cooling duct covering 8. Here, according to
If the feed funnel 5 is looked at more closely, it can be seen that, in the present case according to
Here, mounting of the feed funnel 5 in the piston 1 or in the feed opening 4 takes place as follows:
First of all, the feed funnel 5 is pushed with its funnel 12 over a threaded mandrel 15 of a blind rivet setting tool 16, and subsequently the internal thread 13 of the feed funnel 5 is screwed to an external thread 17 of complementary configuration with respect to it of the threaded mandrel 15. Subsequently, the threaded mandrel 15 is pushed together with the feed funnel 5 through the feed opening 4 until the feed funnel 5 bears with its annular collar 11 against an underside of the cooling duct covering 8, 8′ or against a lower edge of the feed opening 4. Subsequently, axial withdrawal of the threaded mandrel 15 takes place, as a result of which the latter pulls the internal thread 13 downwards and in the process deforms the first upset region 14 plastically to the outside, as shown according to
If the feed funnel 5 according to
It goes without saying that purely theoretically fixing of the feed funnel 5 via a blind rivet connection 6 is also known, in the case of which the feed funnel 5 still has a rivet mandrel (not illustrated), and is held via the latter on the blind rivet setting tool 16 in a similar manner to a blind rivet. Via this, the feed funnel 5 is plugged into the feed opening 4 until, for example, it bears against an outer edge of the feed opening 4 with its stop, that is to say its annular collar 11. Subsequently, the rivet mandrel (not illustrated) is withdrawn by means of the blind rivet setting tool 16, as a result of which the first upset region 14 is upset and is bulged to the outside and, as a result, the cooling duct covering 8, 8′ is clamped in between it and the annular collar 11. In the case of further pulling, the rivet mandrel breaks at a predetermined break point, it then subsequently being necessary, that is to say after the removal of the rivet mandrel, for a through opening through the feed funnel 5 to still be produced, for example to be drilled.
In general, the feed funnel 5 can have an axial length L of between 10 and 35 mm. A funnel length LT preferably lies between 6 mm and 16 mm (6 mm≤LT≤16 mm). A maximum diameter Dmax of the feed funnel lies between 10 and 14 mm, whereas a standpipe internal diameter DSL is approximately 2-8 mm. As a result of the stated length and diameter specifications, a predefined penetration of cooling oil into the cooling duct 3 can firstly be achieved, and also a predefined cooling oil quantity.
It goes without saying that the invention is intended to protect not only the piston 1 with a feed funnel 5 which is arranged in it according to the invention via a blind rivet connection 6 or a blind rivet nut connection 6′, but rather also a feed funnel 5 of this type and the above-described mounting method for fixing it in the feed opening 4.
It is possible by way of the feed funnel 5 according to the invention and the piston 1 according to the invention to achieve a positively locking connection between the feed funnel 5 and the feed opening 4, which positively locking connection makes both simple mounting from merely a single side, namely the underside of the piston, possible, and also reliable fixing of the feed funnel 5 in the feed opening 4. Via this, feed funnels 5 of this type can be produced inexpensively and have a long service life on account of their usually metallic configuration. Here, fixing or setting of the feed funnel 5 in the feed opening 4 can be brought about without problems even by inexperienced workers.
Number | Date | Country | Kind |
---|---|---|---|
10 2019 213 358.4 | Sep 2019 | DE | national |