The present application relates to a method of minimizing fuel consumption in a combustion engine, and more particularly to a rotary styled combusting engine in the manner which eliminates the equivalence of pistons in a conventional internal combustion engine (ICE) or rotating chamber in the modern rotary engine in an efficient manner resulting in reduced fuel consumption.
Aside from the advent of the rotary Wankel engine developed in the late 1950s, the fundamental design of the conventional internal combustion engine has not fundamentally changed in the last one-hundred-and-fifty-years. After its introduction, virtually all improvements have been in the areas of increasing the mechanical and thermodynamic efficiencies from its original design. Although significant strides in engineering efforts have been made resulting with some improvements over recent decades, fundamentally the combustion engine design still has considerable shortcomings.
In the conventional internal combustion engine (ICE), as seen in
Every piston in a conventional piston engine must go through four distinct phases (intake, compression, power, and exhaust). At any given instance, only one piston in the system will provide positive energy to the crankshaft during the power stroke phase. This action from a single piston not only supplies rotational energies to the crankshaft but must supply the energies to move the remaining pistons through their respective phases of expelling exhaust, sucking in new air, and compressing the air/fuel mixture. These resulting dynamics remove energies from the crankshaft rather quickly.
The general equation for work done on an applied force that varies in a linear fashion within a single axis (i.e., up and down motion of a piston) is as follows:
Equation 1 becomes clear when examining the motion traveled by a single piston, as represented in
The invention described in the U.S. Pat. Nos. 6,796,285 and 7,500,462 describes an example of internal combustion engine that operates on a significantly different approach to the conventional combustion engine. Whereas the traditional internal combustion engine relies on the combusting downward motion of the pistons to drive the rotation of its crank, these patents describe variant of a rotary styled engine.
It is an object of the present application to provide a split pistonless combustion flywheel engine. The system separates the combustion process into two bodies, the combustion and power cycle occurs in a first body while the intake and exhaust occur through a second body. The bulky mechanical links between the systems when combined is removed for more efficiently operated singular systems that operate together to complete the combustion process. The present system provides significant advantages over the conventional combustion engines. These advantages can be summarized as follows:
The present system represents a radical departure in its approach from legacy systems resulting in substantial improvements over predecessors in terms of greater efficiency, performance control, and increased fuel economy.
Some key architectural differences between the present system and its predecessors are that the system of the present application includes architecture that separates the role of the four (4) major cycles or “strokes” into two groupings across two dedicated subsystems. The primary subsystem is the flywheel-disk and outer housing block where the actual “combustion cycle” occurs in which the forces from the expanding hot gasses are transferred to the crank. The remaining three cycles “Intake”, “compression” and “Exhaust” cycles are performed externally from the combustion space of the primary power plant in the second subsystem.
By distributing the aforementioned functional responsibilities across the two subsystems such that they are eliminated from the actual power plant, the present invention allows for the combustion cycle to occur on every revolution of the flywheel disk instead of on every two as required in the prior art described in the U.S. Pat. Nos. 6,796,285 and 7,500,462. This radical transformation in approach opens up a multitude of additional unconstrained design choices allowing more flexibility and optimization of key performance requirements. For example, in the present invention, the compression ratio is set by the compression subsystem independently from the dimensions of the bore and stroke dimensions.
The more important features of the assembly have thus been outlined in order that the more detailed description that follows may be better understood and to ensure that the present contribution to the art is appreciated. Additional features of the system will be described hereinafter and will form the subject matter of the claims that follow.
Many objects of the present assembly will appear from the following description and appended claims, reference being made to the accompanying drawings forming a part of this specification wherein like reference characters designate corresponding parts in the several views.
Before explaining at least one embodiment of the system in detail, it is to be understood that the assembly is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The assembly is capable of other embodiments and of being practiced and carried out in various ways. Also it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the various purposes of the present assembly. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present assembly.
The novel features believed characteristic of the application are set forth in the appended claims. However, the application itself, as well as a preferred mode of use, and further objectives and advantages thereof, will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings, wherein:
While the application is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the application to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the application as described herein.
Illustrative embodiments of the preferred embodiment are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present application, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the embodiments described herein may be oriented in any desired direction.
The embodiments and method will be understood, both as to its structure and operation, from the accompanying drawings, taken in conjunction with the accompanying description. Several embodiments of the assembly may be presented herein. It should be understood that various components, parts, and features of the different embodiments may be combined together and/or interchanged with one another, all of which are within the scope of the present application, even though not all variations and particular embodiments are shown in the drawings. It should also be understood that the mixing and matching of features, elements, and/or functions between various embodiments is expressly contemplated herein so that one of ordinary skill in the art would appreciate from this disclosure that the features, elements, and/or functions of one embodiment may be incorporated into another embodiment as appropriate, unless otherwise described.
Referring now to the Figures wherein like reference characters identify corresponding or similar elements in form and function throughout the several views. The following Figures describe embodiments of the present application and its associated features. With reference now to the Figures, embodiments of the present application are herein described. It should be noted that the articles “a”, “an”, and “the”, as used in this specification, include plural referents unless the content clearly dictates otherwise.
The new approach adopts much of the same thermodynamics and mechanical principles related to the classical combustion engine as it differs significantly on how the combustive energies are transferred to a rotating crankshaft. The present invention comprises of a stationary cylindrical outer housing block and a rotating cylindrical shaped flywheel-disk of significant mass sitting concentrically inside the cavity of the housing block allowing it to spin freely about its axial shaft(s).
The stationary cylindrical housing block represents the crucial elements which includes many of the basic components and elements typically found in an internal combusting engine with the exception that the inclusion of the aforementioned are place concentrically from around the outer circumference of the housing defining an arc pattern as oppose to the traditional linear layout. These components and elements provide the basic cycling functions of the engine which include any number of Gasoline Direct Injectors (GDI), spark plugs, combustion chambers, intake ports, exhaust ports, and valve mechanism assemblies making themselves present through within the interior walls of the housing and accessible to combustion cavities on the flywheel-disk which is further described below.
Referring now to
The flywheel-disk 100 eliminates the need for the conventional crankshaft, and the two combustion cavities which are angularly displaced on the flywheel-disk 180 degrees from each other in this particular embodiment replaces the need for any pistons. In the present embodiment, it is likely the two cavities 101 on the flywheel-disk 100 would be designed to combust simultaneously to counter balance any asymmetric forces but not necessarily required. These combustion cavities 101 on the flywheel-disk 100 in combination with the upper combustion chambers 102 located on the outer block housing are referred to as the “split-combustion” set. The volume space within a split chamber replaces the equivalent combustion space normally found between the top of a piston and the combustion dome volume in the cylinder head at Top-Dead-Center (TDC) within a conventional combustion engine. The combustion cavities depicted as the lower moving chamber 101 in
Referring now also to
Referring now also to Figure
Central to the high-pressure air system is the rotary screw compressor 300. The rotary screw compressor 300 brings in ambient air through a filtered intake by means of positive displacement created by two helical rotors. The screw rotors then compress the incoming air as the rotor screws turn. During operation, the rotors turn and the spiral teeth mesh together forming chambers between the rotors and the casing wall. The spiral's geometry forces the air from a larger volume to a smaller volume sending compressed air out the discharge side into a high-pressure reservoir tank 301. An electronic control unit (ECU) manages the rotary screw compressor 300 to maintain a constant pressure in the reservoir tank 301. The source of the required energies to drive the screw compressor 300 could come either from the mechanical torque produced by the flywheel-disk 200 directly and/or indirectly from an electric motor supported by the systems electrical system much like what's found on any standard automobile system.
Referring now also to Figure
Referring now also to
This is where the entire process is initiated as the lower chamber 204 is aligns with the compressed air intake valve 201, gas-direct-injector (GDI) 202, and spark plug 203. The ECU opens valves to the air injectors 201 along with spraying fuel into the lower combustion chamber 204.
Referring to
The engine reaches its end of the power stroke when the trailing approaches the backside if the combustion gate 208 as depicted in
Alternatively, to the exhaust method forementioned in
The present invention allows for unparallel benefits of saving fuel during low load conditions. For instance, in a vehicle, the electronic control unit (ECU) can simply stop delivering fuel and spark to the combustion chamber when vehicle is going down a hill. The ECU can be programmed to apply fuel and spark only when required based on the load. The present application uses the terms “Coast Mode” and “Inertia Throttling” to describe this concept.
Following the final chamber rinse stage, the momentum produced will bring the flywheel-disk 200 back to the intake position again and the entire process is repeated.
The system of the current application has many advantages over the prior art including at least the following:
The particular embodiments disclosed above are illustrative only, as the application may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. It is therefore evident that the particular embodiments disclosed above may be altered or modified, and all such variations are considered within the scope and spirit of the application. Accordingly, the protection sought herein is as set forth in the description. It is apparent that an application with significant advantages has been described and illustrated. Although the present application is shown in a limited number of forms, it is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/048079 | 8/27/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63071288 | Aug 2020 | US |