1. Field of the Invention
The invention relates to an automatic bowling pinsetter and, more particularly, to a cam and roller-based pit cushion follower assembly located between a pit cushion and a support arm of a pit cushion assembly of the pinsetter.
2. Discussion of the Related Art
Automatic pinsetters are widely used in bowling alleys to sweep downed pins from bowling lanes during and between frames and to set upright pins in place. Referring to
The pit cushion assembly 24 is suspended across a pit area P behind the lane L to stop the motion of a bowling ball B after the ball passes through the bowling pins and falls into the pit area P. Pit cushion assembly 24 comprises a pit cushion 42 that extends across the lane and two support assemblies 44, one located at each end of the pit cushion, that suspend the pit cushion 42 above the pit area P. The pit cushion 42 comprises a steel plate 50 protected by pads 48 so as not to mark or damage bowling balls. A bottom end of the plate 50 is inclined forwardly relative to the remainder of the plate and is positioned just above the floor of the pit area A when the pit cushion assembly 24 is in its initial or deactivated position shown in solid lines in
Referring to
Referring to
The follower link assembly 68 of each support assembly 44 includes a pair of inclined follower links 74, each of which has an aperture 76 in its lower front end and an elongated slot 78 in its upper rear end. The lower end of the vertical support arm 64 contains a pressed bushing 80 in an aperture 84 thereof that acts as a pivot for the pit cushion 42. Inserted into bushing 80 is a steel spacer 82. Spacer 82 exceeds the length of the pressed bushing 80. Each steel spacer 82 acts as a pivot point for the lower end of the associated follower link 74. Specifically, the spacer 82 receives a ½ inch bolt 86 that pivotally attaches the follower link 74 to the bottom aperture 84 in the mounting arm 46. A uniball 88 is also attached to the bolt 86 for connection to the adjustable vertical link 30. The slot 78 in the upper end of each follower link 74 slidably receives a bushing assembly 90 which is mounted in a bottom aperture 92 in the support arm 64 by a ½ inch bolt 94. Coordinated pivoting of the follower links 74 about the bolts 94 and sliding movement of the bushing assemblies 90 along the slots 78 accommodates swinging movement of the pit cushion 42 relative to the support arms 64. The extent of relative movement of the pit cushion 42 away from the support arms 64 at the end of a return stroke occurring at the end of the pinsetter operational cycle is limited by the bottoming out of the bushing assemblies 90 in the slots 78.
In operation, the impact of a bowling ball B against the pit cushion 42 causes the pit cushion 42 to rotate clockwise and thus push the vertical links 30 upward. This upward movement rotates the triangular plates 34 clockwise, pushing the upper link 32 forward to unlatch the rake trip mechanism or shotgun link and lower the rake sweep board 23 to the bowling lane L. As the rake assembly 22 lowers the sweep board 23, the pit cushion link 32 rotates the triangular plates 34 clockwise and, through the vertical links 30, raises the pit cushion 42 to allow the bowling ball B to pass under the pit cushion 42 to the ball elevator (not shown). During the return stroke of the rake sweep board 23, the pit cushion 42 rotates counterclockwise and pulls the vertical links 30 downward, rotating the triangular plates 34 counterclockwise and moving the pit cushion 42 downward. The pit cushion 42 again is in position to await delivery of the next bowling ball. It can thus be seen that the rake sweep board 23 and pit cushion 42 operate together. When the rake sweep board 23 is down, the pit cushion 42 is up. When the rake sweep board 23 is up, the pit cushion 42 is down.
The follower link assembly 68 is viewed by pinsetter mechanics as an area with a high rate of mechanical failure and maintenance. Due to the severity and repetition of the bowling ball striking the pit cushion, the integrity of follower link assembly 68 has been known to deteriorate at an undesirable rate. The follower link assembly parts are used to control the position of the pit cushion prior to bowling ball impact, making the follower link assembly components susceptible to the severity of bowling ball impact. The pivot point of the pivot links 74 eventually degrades at the point of connection with the steel spacers 82 due to the severity of bowling ball impact and lack of adequate lubrication.
In addition, the urethane pivot rollers of the pivot links harden over time and resist pivoting of the follower link assembly and pit cushion. The follower link assembly part deterioration results in continued restricted pit cushion rotation, which in turn results in reduction of vertical link and triangular plate upward rotation upon bowling ball impact and making more difficult to unlatch the rake trip mechanism to begin the pinsetter operational cycle. As parts of the follower link assembly continue to deteriorate, component rotation continues to be seriously impeded, thus resulting in the need for the follower link assembly replacement to restore the rake trip mechanism performance to satisfactory operable condition.
In addition, the follower links 74 control the forward positioning of the lower end of the pit cushion 42. Due to the pit cushion position, bowling balls are susceptible to getting pinned between the pit cushion and ball lift rod assembly that could result in bowling ball damage and the failure to return the bowling ball back to the bowler.
The need has therefore arisen to provide a pit cushion follower that is simpler, less prone to wear, is less sensitive to part wear, and provides less restriction to pit cushion motion than link-based pit cushion followers.
In accordance with a first aspect of the invention, at least some of the above-mentioned needs are met through the use of a cam and roller-based pit cushion follower assembly that allows a pit cushion of an automatic pinsetter to move toward and away from a support arm on which the pit cushion is movably mounted without restricting a range of motion of the pit cushion away from the support arm. Preferably, the cam and roller assembly comprises a roller that is configured to be mounted on the support arm, and a cam that is configured to be mounted on the pit cushion at a location in which the cam contacts and rides along the roller when the pit cushion moves toward the support arm from an initial position thereof. At least an outer peripheral surface of the roller preferably is formed from an elastomeric material.
The assembly may additionally include a bolt that is configured to mount the cam on the pit cushion and that is also configured to receive an end of a link that is coupled to a rake assembly of the pinsetter.
A pit cushion incorporating a cam and roller assembly as described above, either as initially assembled or as retrofitted via the replacement of a link-based follower assembly with the cam and roller assembly, includes a support arm, a pit cushion movably supported on the support arm, a roller mounted on the support arm, and a cam mounted on the pit cushion. The cam is operative, upon movement of the pit cushion toward the support arm from an initial position thereof, to ride along the roller while driving the support arm to move. The cam is also operative to permit return movement of the pit cushion to the operative position thereof without restricting the range of motion of the pit cushion.
The pit cushion assembly may additionally be connected to a link that is operable to drive the pit cushion upwardly and rearwardly while the cam rides along the roller. The link typically is responsive to movement of a rake assembly.
In accordance with still another embodiment of the invention, a method is provided of replacing a link-based follower assembly of a pit cushion support assembly with a cam and roller-based follower assembly and of operating the resulting assembly.
Use of a cam and roller-based follower assembly instead of or in place of a link-based follower assembly eliminates all of the follower link assembly components known to fail due to ball impact and lack of adequate lubrication. Pit cushion positioning when the pinsetter is waiting for bowling ball impact (0 degrees) is not dictated by the follower's components and, therefore, is not as susceptible to component deterioration as in prior assemblies due to the severity and repetition of the bowling ball striking the pit cushion. Also, pit cushion rotation is not controlled by the cam and roller-based follower assembly, resulting in less component deterioration. Rotation of the pit cushion is unimpeded until the pit cushion cam meets the elastomeric roller assembly while freely pivoting clockwise. This unimpeded movement results in improved vertical link and triangular plate upward rotation, greatly improving the operation and reliability of the rake trip mechanism to begin the pinsetter cycle. Minimal maintenance and lubrication are required to maintain the integrity of the follower's components.
These and other features and advantages of the invention will become apparent to those skilled in the art from the following detailed description and the accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
A preferred exemplary embodiment of the invention is illustrated in the accompanying drawings in which like reference numerals represent like parts throughout, and in which:
Referring to
Hence, the pit cushion assembly 124 comprises a pit cushion 142 that extends across the lane L and that is suspended by two support assemblies 144, one located at each end of the pit cushion 142 and only one of which is shown. The pit cushion 142 comprises a steel plate 150 protected by pads 148 so as not to mark or damage bowling balls. A bottom end of the plate 150 extends forwardly and downwardly from the pads 148 to a position just above the surface of the pit area P when the pit cushion assembly 142 is in its initial or deactuated position of
Each support assembly 144 including a support arm 164, a pair of upper support arms 167, and a lower follower assembly 168. The upper end of each support arm 164 of each support assembly 144 is pivotally mounted to one of the front brackets 60 described above in connection with
The upper support arms 167 and a lower follower assembly 168, in combination with pivoting movement of the support arm 164, permit the pit cushion 142 to swing upwardly and rearwardly upon ball impact so that a bowling ball B can pass under the pit cushion 142 to enter the ball elevator (not shown). They also permit the pit cushion 142 to return to its initial position at the end of a pinsetter's operational cycle. The upper support arms 167 of each support assembly 144 are pivotally mounted to pivot points 170, 172 on the upper end of an associated vertical mounting plate 146 on the pit cushion 142 and an intermediate portion of the support arm 164, respectively. However, as will now be detailed, the follower assemblies 168 do not positively couple the vertical mounting plates 148 to the support arms 164.
Referring again to
After assembly, the pit cushion assembly 142 assumes the initial position illustrated in
The impact of a ball B against the pit cushion 142 drives the pit cushion 142 to rotate clockwise as seen in
As the pinsetter 20 nears the completion of its cycle, the rake sweep board 23 rises, driving the vertical links 30 downwardly through the triangular plates 34, allowing the pit cushion 142 to move downward and forward to return to the initial position of
It can best be seen that the cam and roller-based follower assembly has considerably fewer parts than a conventional link-based follower assembly. It is less prone to failure due to its simplicity and due to the fact that it does not positively couple the pit cushion to the support arm and, thus, is of a considerably less shock and stress. It is also virtually maintenance free. It also increases the stroke of the pit cushion by at least 30° when compared to the same system employing a link-based follower assembly.
Although the best mode contemplated by the inventors of carrying out the present invention is disclosed above, practice of the present invention is not limited thereto. It will be manifest that various additions, modifications and rearrangements of the features of the present invention may be made without deviating from the spirit and scope of the underlying inventive concept. The scope of still other changes to the described embodiments that fall within the present invention but that are not specifically discussed above will become apparent from the appended claims and other attachments.
This application is a continuation-in-part application of co-pending U.S. application Ser. No. 10/774,096, filed Feb. 6, 2004 and entitled “Pit Cushion Cam and Roller Kit,” the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2297330 | Schoepfer | Sep 1942 | A |
3124354 | Asmuth | Mar 1964 | A |
3233901 | Sandahl | Feb 1966 | A |
3790167 | Lenhart et al. | Feb 1974 | A |
4530501 | Paster et al. | Jul 1985 | A |
Number | Date | Country | |
---|---|---|---|
Parent | 10774096 | Feb 2004 | US |
Child | 11030820 | US |