This application incorporates by reference in its entirety U.S. Provisional Patent Application No. 62/849,449.
The invention generally relates to the field of baseball pitcher training devices.
Pitcher training devices have been around nearly as long as the sport of baseball itself. Each pitch requires the athlete to develop a specific muscle memory that can only be obtained through repetitive practice. Pitcher training devices are known in a general sense, but all have certain shortcomings. What is missing from the art is a device that can be easily installed in a dugout during practice and games to allow pitchers to practice muscle memory exercises when they would otherwise be idle, and which can be easily removed afterward along with the rest of the team's gear.
Some embodiments of the present invention may provide one or more benefits or advantages over the prior art.
Some embodiments may relate to a pitcher training device that provides for training the fastball and changeup pitches in a simple device that can be easily installed in a dugout. A player may use the device between innings for example, or even as a primary exercise, to develop and refine his muscle memory for throwing difficult pitches. Further, the device may be taken home after the game.
Other benefits and advantages will become apparent to those skilled in the art to which it pertains upon reading and understanding of the following detailed specification.
The invention may take physical form in certain parts and arrangement of parts, embodiments of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof, wherein like reference numerals indicate like structure, and wherein:
As used herein the terms “embodiment”, “embodiments”, “some embodiments”, “other embodiments” and so on are not exclusive of one another. Except where there is an explicit statement to the contrary, all descriptions of the features and elements of the various embodiments disclosed herein may be combined in all operable combinations thereof.
Language used herein to describe process steps may include words such as “then” which suggest an order of operations; however, one skilled in the art will appreciate that the use of such terms is often a matter of convenience and does not necessarily limit the process being described to a particular order of steps.
Conjunctions and combinations of conjunctions (e.g. “and/or”) are used herein when reciting elements and characteristics of embodiments; however, unless specifically stated to the contrary or required by context, “and”, “or” and “and/or” are interchangeable and do not necessarily require every element of a list or only one element of a list to the exclusion of others.
Terms of degree, terms of approximation, and/or subjective terms may be used herein to describe certain features or elements of the invention. In each case sufficient disclosure is provided to inform the person having ordinary skill in the art in accordance with the written description requirement and the definiteness requirement of 35 U.S.C. 112.
Referring now to the drawings wherein the showings are for purposes of illustrating embodiments of the invention only and not for purposes of limiting the same,
The difference between Configuration A and Configuration B is in how the rotatable disc 104 is rotatably mounted to the vertically mountable surface 102. In Configuration A, a centrally located axis of rotation 104x extends through a diameter of the rotatable disc 104 in parallel alignment with a central aperture 104p. The person having ordinary skill in the art will understand that the centrally located axis of rotation 104x is a logical mathematical abstraction and not a physical component of the embodiment 100. Further, as used here and throughout the specification and claims, the term “central” or “centrally located” refers to a center of mass. Accordingly, the centrally located axis of rotation 104x passes through a center of mass of the rotatable disc, bisecting the rotatable disc 104 into equal halves. Moreover, the centrally located axis of rotation 104x does not change or move relative to the vertically mountable base 102, meaning the axis of rotation 104x is in a fixed angular orientation relative to the base 102.
In embodiments having a solid rotatable disc 104, the central aperture 104p comprises a single through-hole starting at a central opening in the circumferential surface 104c, passing through the disc, and ending in a second diametrically opposed central opening in the circumferential surface. In contrast, in embodiments having a hollow rotatable disc, the term “central aperture” means a pair of diametrically opposed openings in the circumferential surface 104c. In either case the central aperture 104p receives an axle 106 therethrough, about which the rotatable disc is free to rotate.
The axle 106 fixedly cooperates with the vertically mountable surface 102, meaning the axle 106 remains stationary relative to the vertically mountable surface 102, through a direct or indirect mechanical communication, while leaving the rotatable disc 104 free to rotate about the axle 106. The axle may directly connect to the vertically mountable surface 102 or it may connect to it through one or more intervening structures. In Configuration A of the embodiment 100, such an intervening structure is shown as circumferential mounting brackets 108a, and 108b. The first bracket 108a receives a first end 106a of the axle 106 in a fixedly mounted relation according to any suitable known means as the ordinarily skilled artisan is capable of selecting as a matter of design choice and without undue experimentation.
For example, and without limitation, the first bracket 108a may receive the first end 106a of the axle 106 in an interference fit, thus holding the axle 106 stationary relative to itself 108a. Alternatively, any of a wide variety of known means may be used such as, without limitation, cotter pins, press fitted end caps, threaded nuts, or one or more ends 106a, 106b of the axle 106 may be formed to a polygonal or star shape fitted to a complementary opening in the brackets 108a, 108b or, for instance, in a bushing fitted in the brackets 108a, 108b. The person having ordinary skill in the art will readily appreciate that only one end of the axle 106 must be fixedly mounted to a circumferential mounting bracket 108a or 108b. The other end of the axle may or may not be fixedly mounted while still achieving the same result, namely, to hold the axle 106 stationary while the rotatable disc 104 rotates about the axle 106. Thus, one end (106a or 106b) of the axle 106 may be mounted to the vertically mountable base 102 without being fixedly mounted, provided that the other end is fixedly mounted to the vertically mountable base 102.
The circumferential mounting brackets 108a, 108b may take any suitable form provided they fixedly mount to the axle 106 at one end and to the vertically mountable surface 102 at an opposing end. As used here, the term “fixedly mount” includes mounting directly or indirectly, and also includes mounting brackets 108a, 108b that are unitary with the vertical mounting surface 102, such as by comprising a single molded part. One important limitation of the circumferential mounting brackets 108a, 108b is that they must provide sufficient clearance between the rotatable disc 104 and the vertically mountable surface 102 to allow the rotatable disc 104 to rotate a full 360 degrees about the axle 106.
With continuing reference to Configuration A of
Configuration A, is particularly suitable for training a pitch where the pitcher provides backspin to the baseball, as in a fastball. The pitcher uses Configuration A by placing his fingers on the top edge of the circumferential surface 104c of the rotatable disc 104 and spinning the top edge toward himself. Proper follow-through is trained by requiring the pitcher to land his hand on the landing wedge 110 such that his hand finishes with the landing apex 110a between his second and third fingers, i.e. his middle finger and ring finger.
Configuration B, is suited for training the changeup pitch. The pitcher places his fingers at the top edge of the circumferential surface 104c and spins the rotatable disc 104 by moving his hand into a thumbs down position. Proper follow-through is trained by requiring the pitcher to land his hand on a vertical surface (112L1 or 112L2) of the follow-through landing 112.
With continuing regard to Configuration B of
Turning to
Turning to
While Configurations A and B are shown here as integrated into a single embodiment, this is not a limitation of the invention. Embodiments may include either Configuration A or Configuration B, or both without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
687873 | Daniels | Dec 1901 | A |
2578313 | Moseley | Dec 1951 | A |
2890052 | Burrell | Jun 1959 | A |
3118670 | Smith | Jan 1964 | A |
3554550 | Schram | Jan 1971 | A |
4417730 | Weiner | Nov 1983 | A |
4460172 | Hogan | Jul 1984 | A |
4616827 | Bergland | Oct 1986 | A |
4930773 | Outlaw | Jun 1990 | A |
5222732 | Robey | Jun 1993 | A |
5472187 | Kempf | Dec 1995 | A |
5728031 | Honeycutt | Mar 1998 | A |
5820495 | Howland | Oct 1998 | A |
5984813 | Cinnella | Nov 1999 | A |
6663519 | Kuhn et al. | Dec 2003 | B2 |
7217202 | Troxell | May 2007 | B2 |
7247106 | Brandt | Jul 2007 | B1 |
7435195 | Calderon | Oct 2008 | B1 |
7517290 | Springer | Apr 2009 | B1 |
7753811 | Mark | Jul 2010 | B2 |
8246497 | Garcia | Aug 2012 | B1 |
8333671 | Wheel | Dec 2012 | B1 |
8439774 | Massey | May 2013 | B2 |
8708843 | Sekac et al. | Apr 2014 | B1 |
8807570 | Zalar | Aug 2014 | B1 |
9149698 | Spiegler | Oct 2015 | B2 |
9308427 | Garner | Apr 2016 | B2 |
9623312 | Hofmeyr | Apr 2017 | B2 |
9833676 | Smith, Jr. | Dec 2017 | B2 |
20040077436 | Goucher et al. | Apr 2004 | A1 |
20060199673 | Littlejohn | Sep 2006 | A1 |
20140135151 | Johnston | May 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20200360785 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62849449 | May 2019 | US |