External storage devices may be communicatively coupled to a computer in a variety of ways. For some storage devices, a cable may be coupled directly between the storage device's housing and the computer. For other storage devices, a wireless connection (e.g., a Bluetooth connection) may be created between circuitry in both the storage device and the computer. For still other storage devices, a separate cradle is first coupled to the computer (e.g., via a USB cable), and the storage device may then mate with the cradle by any of a variety of connectors. The cradle solution may enable a user to more conveniently connect and disconnect a storage device from a computer and has been a preferred solution for many storage devices.
One challenge in designing storage device cradles is finding the proper balance between a tight fit for the mating connectors of the storage device and the cradle, in order to ensure proper electrical interconnection, and providing sufficient space/mechanical give between the mating connectors, in order to allow the storage device to disconnect from the cradle without undue effort. If the fit is too tight, the storage device must be wrenched off of the cradle, and the delicate mating connectors may be damaged. If the fit is too loose, electrical shorts may arise between the storage device and the cradle.
There is therefore a need for an improved cradle for coupling between a storage device and a computer.
Referring to
The storage device cradle 100 may comprise any of a variety of cradles configured to receive a storage device 110 and to enable communications between the storage device 110 and a computer. In one embodiment, the storage device cradle 100 is designed specifically for a particular type of storage device 110. In other embodiments, the storage device cradle 100 may be a more universal cradle designed to accommodate storage devices of different types, sizes and configurations. The storage device cradle 100 may also be designed to receive more than one storage device 110 at a time. In one embodiment, the storage device cradle 100 may comprise a distinct component; however, in other embodiments, the storage device cradle 100 may comprise one part of a system having multiple components.
The housing 102 of the storage device cradle 100 includes a receiving surface 108 sized and configured to receive at least a portion of the storage device 110. In one embodiment, as illustrated in
The receiving surface 108 may be formed between three walls 114a-c of the housing 102. As illustrated in
The receiving surface 108 may be substantially planar along its length, extending from the rear wall 114c of the storage device cradle 100 towards the front 116 of the storage device cradle 100. However, in other embodiments, the receiving surface 108 may include any of a variety of contours (abrupt or gradual), which may facilitate a mating connection with particular types of storage devices. As illustrated in
In one embodiment, the receiving surface 108 further includes a hole 112 defined therethrough. The hole 112 may have any of a variety of sizes and shapes, and may be sized and configured to enable the storage device connector 106 to extend at least partially therethrough. The housing 102 may further include a bottom surface 124 configured to lie against a supporting surface, such as the ground or a table. In one embodiment, the receiving surface 108 extends along the axis L at an angle to the bottom surface 124, which may facilitate the loading and unloading of the storage device 110.
The housing 102 of the storage device cradle 100 may be formed from any of a variety of materials. In one embodiment, the housing 102 may be formed from a molded plastic. In other embodiments, heavier materials may be used to form the housing 102 in order to increase the overall mass of the storage device cradle 100. Such increased mass may facilitate the unloading of the storage device 110 by acting as a counterweight to the forces created as the connectors of the storage device 110 and the storage device cradle 100 are separated. The housing 102 may also be formed as a unitary body or may be assembled from a plurality of pieces.
The external interface 104 may comprise any of a variety of interfaces configured to communicatively couple to a computer (not shown). In one embodiment, as illustrated, the external interface 104 may comprise a wired universal serial bus (USB) connector. In another embodiment, the external interface 104 may comprise some other wired serial or parallel interface. In still other embodiments, the external interface 104 may comprise a wireless interface configured to communicate according to one or more protocols and may include one or more antennas.
The storage device connector 106 may comprise any of a variety of connectors communicatively coupled to the external interface 104 and configured to couple to the storage device 110. In some embodiments, the storage device connector 106 need not comply with the same interface standards as the external interface 104, and the storage device cradle 100 may include circuitry communicatively coupled between the storage device connector 106 and the external interface 104. However, in other embodiments, as illustrated, the storage device connector 106 may comply with the same interface standards as the external interface 104, and a cable (not visible) may extend between the storage device connector 106 and the external interface 104. For example, the storage device connector 106 may comprise a USB connector, such as a mini-USB, micro-USB or other USB-compatible connector, and a cable may extend from the storage device connector 106 to the USB-compatible external interface 104.
In one embodiment, the storage device connector 106 is positioned to extend at least partially through the hole 112 in the receiving surface 108 and is rotatable about a pivot axis A defined by at least one shaft mounted within the housing 102. The hole 112 may be sized and shaped such that the storage device connector 106 can rotate relatively freely about the pivot axis A within the hole 112. As illustrated in the top view of
The rotation of the storage device connector 106 may enable a user to unload the storage device 110 from the storage device cradle 100 while exerting some torque on the storage device 110 without damaging the sensitive electrical connectors of the storage device 110 and the storage device cradle 100.
The storage device 110 may comprise any of a variety of external storage devices configured to communicate with a computer (not shown). For example, the storage device 110 may comprise an external disk drive having a USB, FireWire or other serial interface, a personal media device having an internal memory (e.g., an mp3 player), or a cellular phone having internal storage. In addition to the internal storage, the storage device 110 may include various controllers and/or processors configured to perform computing tasks.
The storage device 110 may include a cradle connector (illustrated in
In one embodiment, a cable 126 extends between the storage device connector 106 and the external interface 104. The cable 126 may have sufficient flexibility to enable the storage device connector 106 to pivot about the at least one shaft 118a, b substantially freely. Of course, in other embodiments, other electrical elements may be used to communicatively couple between the storage device connector 106 and the external interface 104.
In one embodiment, the stops 130a, b may comprise distinct cylindrical obstructions within the housing 102, as illustrated. In other embodiments, the stops 130a, b may comprise differently shaped components within the housing 102, which, when combined with the geometry of the storage device connector 106, limit the connector's degree of rotation. For example, the two stops 130a, b may be formed by the bottom surface of the housing 102 of the storage device cradle 100, which may obstruct the complete rotation of the storage device connector 106. In one embodiment, the storage device connector 106 may rotate through approximately 30 degrees between the two stops 130a, b. In another embodiment, the storage device connector 106 may rotate through approximately 45 degrees between the two stops 130a, b. In other embodiments, the storage device connector 106 may rotate through a greater or lesser angle.
As illustrated in
As described herein, at least some of the acts comprising the method 900 may be orchestrated by a processor according to an automatic manufacturing algorithm, based at least in part on computer-readable instructions stored in computer-readable memory and executable by the processor. A manual implementation of one or more acts of the method 900 may also be employed, in other embodiments.
At act 902, a housing 102 is provided, the housing 102 having a receiving surface 108 sized and configured to receive at least a portion of a storage device 110. In one embodiment, the housing 102 may be provided as a plurality of components that may be arranged and joined during a later stage. In another embodiment, the housing 102 may comprise a unitary piece provided in a form substantially similar to that shown in
At act 904, a storage device connector 106 configured to couple to the storage device 110 is provided. As described above, the storage device connector 106 may comprise any of a variety of connectors configured to couple to the storage device 110. In one embodiment, the storage device connector 106 may comprise a USB connector configured to couple to the storage device 110.
A cable 126 may also be coupled between the storage device connector 106 and an external interface 104 configured to communicatively couple to a computer (not shown). The cable 126 may comprise any of a variety of wire configurations and may have sufficient flexibility to allow the storage device connector 106 to rotate relatively freely.
At act 906, a hole 112 is formed through the receiving surface 108. The hole 112 may be formed in a variety of ways. In one embodiment, the hole 112 may be formed by punching, sawing or otherwise creating a hole in the receiving surface 108. In other embodiments, the receiving surface 108 may be molded or pieced together in such a way that a hole 112 is formed therethrough.
At act 908, the storage device connector 106 is positioned to extend at least partially through the hole 112 in the receiving surface 108, the storage device connector 106 rotatable about a pivot axis A defined by at least one shaft 118a, b mounted within the housing 102. In one embodiment, the storage device connector 106 may be coupled to the at least one shaft 118a, b (e.g., the storage device connector 106 and the at least one shaft 118a, b may comprise a unitary component), and the storage device connector 106 and the at least one shaft 118a, b may together be mounted within the housing 102 such that the storage device connector 106 extends at least partially through the hole 112. In another embodiment, the at least one shaft 118a, b may first be mounted within the housing 102, and the storage device connector 106 may be coupled to the at least one shaft 118a, b in a position such that the storage device connector 106 extends at least partially through the hole 112.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs). However, the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more programs executed by one or more processors, as one or more programs executed by one or more controllers (e.g., microcontrollers), as firmware, or as virtually any combination thereof.
Number | Name | Date | Kind |
---|---|---|---|
6193546 | Sadler | Feb 2001 | B1 |
7014486 | Wu et al. | Mar 2006 | B1 |
7167372 | Mori et al. | Jan 2007 | B2 |
7253840 | Kayanuma | Aug 2007 | B2 |
7333328 | Funawatari et al. | Feb 2008 | B2 |
7414668 | Takahashi | Aug 2008 | B2 |
20040097127 | Smith et al. | May 2004 | A1 |
20040141253 | Funawatari et al. | Jul 2004 | A1 |
20080142651 | Tomasini et al. | Jun 2008 | A1 |
20080304240 | Shigemori | Dec 2008 | A1 |