The present invention discloses a support device attached to a structural location of a vertically actuating vehicle lift. More specifically, the present invention discloses a pivotally supported hanger secured to a tubular location of a vehicle underbody supporting lift assembly proximate in location to a vehicle wheel and which facilitates transfer of a vehicle tire and rim to and from the wheel without requiring the individual to squat in order to place the tire and rim upon a floor or alternatively elevate the tire from the floor to replace it on to the wheel.
The prior art is documented with examples of hoist mounted wheel hangers, and such as for hanging a wheel on a hoist arm. A first example of this is set forth in Henderson, U.S. Pat. No. 7,815,158 which teaches a double hinged and hoist mounted wheel hanger including a rigid clevis having top, bottom and base plates arranged in an integral “U” shape and such that a first hinge bolt passes through the top and bottom plates for supporting an arm connector. A second hinge bolt passes through the arm connector and in turn hingedly supports a further extending and pivotally support rod, upon an end of which is exhibited a retainer pin for supporting a wheel and preventing the same from slipping off the arm.
A series of related apparatuses for supporting automotive tires on a hanger hoist are depicted in each of US 2003/0080270, US 2002/0047077, US 2002/0003196 and 2004/0060775, all to Gibson et al. and each of which disclosing a hanger pin or spindle 3-10 inches in length with a coned or rounded distal end and extending from a hingedly mounted support arm in a direction slightly upward from a horizontal plane. Hicks US 2003/0155475 and US 2009/0067966 each teaches a hoist tire hanger with an angled bracket configuration for vertically attaching to a horizontal tubular hoist location and which depicts an upwardly angled tire hanging section.
The present invention discloses a pivot hanger assembly adapted to being mounted to a structural supporting location associated with a vehicle lift. A clamp subassembly includes a plurality of assembleable and inter-adjustable brackets adapted to being affixed around a rectangular tubular perimeter corresponding to the structural supporting location of the vehicle lift.
A selected one of the brackets exhibits at least a first hinge collar support extending along a vertically extending edge, with an elongated arm exhibiting at least a second hinge collar support along a proximal end which aligns with the first collar support in order to define a continuous channel. A hinge pin inserts through the continuous channel and in order to hingedly mount the arm to the clamp subassembly in a load bearing permitting fashion.
Additional features include first and second pluralities of hinge collar supports arranged in alternating spaced apart fashion. The clamp subassembly can also include first, second and third “L” shaped brackets, of which the first bracket is a hinge bracket supporting the first hinge collar supports.
In one non-limiting mounting arrangement, first and second selected “L” shaped brackets each have a pair of spaced apart and exteriorly threaded studs extending from selected edge surfaces thereof. Second and third selected of said “L” shaped brackets each exhibiting an elongated slot defined along further selected edge surfaces which overlap with the selected edge surfaces of the first and second brackets in order to assemble the studs through the slots in a continuous four sided extending fashion consistent with the tubular rectangular perimeter of the vehicle lift. Pluralities of nuts and lock washers affix and tighten over projecting threaded portions of the studs.
Additional features include the hinge pin exhibits a first integrally formed and annular enlarged head, a second annular enlarged head affixing to a distal projecting end of the pin following installation through the continuous channel. The elongated arm also exhibits a first proximal end located profile converging at a neck transition radii to an upwardly angled and distal end extending profile. A notch bottom radii is formed into an upper edge of the end extending profile proximate a distal end of the elongated arm which can also exhibit a stamped planar profile exhibiting a pattern of depth punch portions between the proximal and distal ends.
Reference will now be made to the attached drawings, when read in combination with the following detailed description, wherein like reference numerals refer to like parts throughout the several views, and in which:
As previously described, the present invention discloses a pivotally supported hanger secured to a tubular location of a vehicle underbody supporting lift assembly proximate in location to a vehicle wheel and which facilitates transfer of a vehicle tire and rim to and from the wheel without requiring the individual to squat in order to place the tire and rim upon a floor or alternatively elevate the tire from the floor to replace it on to the wheel.
The support hanger as disclosed below is incorporated into the swing arms associated with the auto lift, thereby elevating and lowering along with the vehicle lift swing arms. This allows the device to be raised and lowered with the auto to account for persons of differing height and is further hanged at the clamp portion in order to permit the hanger to be swung out of the way when not in use.
The hanger device is constructed of a strong and durable material, including but not limited to a steel or other metal exhibiting sufficient material characteristics sufficient for supporting the combined weight of a tire and rim, and along with factoring in the dynamic properties associated with the pivot bolt and spacer for interconnecting the pivot arm with the tubular section mounting clamp. The construction of the clamp and arm components of the hanger is further not limited to that depicted in the below description and accompanying illustrations, buy may further incorporate a tubular cross section (not limited to square tubing) with a hollow interior, such as in order to establish the necessary material characteristics along with reduction in weight and material content as opposed to a solid hanger construction.
Referring to
A pair of vertically traversable structural supports 8 and 10 are arranged in inner opposing fashion upon each of the superstructures 4 and 6 of the lift assembly. As previously indicated, any of vertical lift cylinders (see as represented in
Pairs of vehicle underbody supporting swing arms are shown at 16 & 18 pivotally mounted to the vertically traversable support 8 associated with the first lift superstructure 4, and further at 20 & 22 pivotally mounted to the vertically traversable support 10 associated with the second lift superstructure 6. As is known, the swing arms 16 & 18 and 20 & 22 each include either a solid or length adjustable and telescoping tubular body and can optionally terminate at an inner free ends in any suitable vehicle underbody frame supporting profile not limited to upwardly arrayed and load supporting pads or the like.
In this fashion, a vehicle 24 in
A wheel supporting pivot hanger assembly, generally at 26, which supports the combined weight of a tire 28 and supporting rim, such as upon removal from the wheel supporting structure established by the front axis (shown at 30) of the vehicle 24. As is best shown in
Referring to
Each of the brackets 32, 34 and 36 exhibits a substantially “L” shape in profile with first and second angled sides. The first bracket 32 further exhibits a first plurality of spaced apart and hinged collar supports, depicted at 38 and 40, and extending along a vertically extending edge of an arrayed side 42. A pair of spaced apart and exteriorly threaded studs 44 and 46 projects from intermediate surface locations of a second angled side 48 of the first bracket 32.
The second angled bracket 34 likewise includes a lengthwise extending slot or recess, see elongated inner edge profile 50, defined along a first side 52 thereof, along with a further pair of spaced apart and exteriorly threaded studs 54 and 56 projecting from intermediate surface locations of a second angled side 58. The third angled bracket 36 includes a similarly configured lengthwise extending slot (elongated inner edge profile 60) defined along a first side 62 thereof, with a second angled and flat side 64.
The brackets 32, 34 and 36 are assembled in the manner best shown in
The brackets 32, 34 and 36 can be successively assembled around the tubular perimeter location in such a fashion that the pairs of threaded studs 44/46 and 54/56 seat through their opposing slots 50 and 60 at a location in order to size the overlapping brackets to conform to each side dimension of the perimeter (e.g. again at 16). Upon the individual brackets 32, 34 and 36 being properly inter-aligned and tightened by the fasteners, the inner perimeter established by the assembled brackets closely matches the perimeter tubular profile (e.g. again at 16 in
As further shown, the elongated slots, as best depicted by selected slot 50, are formed into an exterior protuberant surface (e.g. at 51 in
An elongated arm is depicted and exhibits a first proximal end located profile 78 converging at a neck transition radii location (at 80) to an upwardly angled and distal end extending profile 82. A notch bottom radii 84 is formed into an upper edge of the end extending profile proximate a distal end 86 of the elongated arm, which can also exhibit a stamped planar profile exhibiting a pattern of depth punch portions 88, 90, 92, et. seq. between the proximal and distal ends.
The elongated arm further exhibits a second plurality of hinge collar supports 94 and 96 projecting along a proximal end which aligns with the first collar supports 38 and 40 of the first bracket 32 and, upon assembly as shown in
Additional features include the hinge pin 98 exhibiting a first integrally formed and annular enlarged head 100. A second annular enlarged head 102 can be separately provided and affixed to a distal projecting end of the pin 98 (see end face located seating aperture 104 in phantom in
Having described our invention, other and additional preferred embodiments will become apparent to those skilled in the art to which it pertains, and without deviating from the scope of the appended claims. This can include the plurality of three angled brackets making up the clamping subassembly being reconfigured as a differing plurality of inter-assembleable items for the purpose of sizing and securely clamping about the tubular perimeter defined lift location.
The hanger assembly is further capable of being reconfigured or redesigned for affixing to any other configuration of vehicle lift beyond that described and illustrated, as well as for mounting to any vertical pole, cart, jack, stand, wall or ceiling in any location which can operate in a manner similar to that described. It is further envisioned that the hanger device can be attached or mounted by any number of methods outside of that described, and which includes but is not limited to hinged, welded, bolted, bracketed or otherwise clamped. Yet additional features can include redesigning the tubular arm constructions to exhibit a range of telescopic motion, thereby accommodating larger tires and width dimensioned rims.
This application claims the benefit of U.S. Provisional Application 61/611,814 filed on Mar. 16, 2012, the contents of which are incorporated herein its entirety.
Number | Name | Date | Kind |
---|---|---|---|
518308 | Corscaden | Apr 1894 | A |
722349 | Young | Mar 1903 | A |
765152 | Stark | Jul 1904 | A |
1228531 | Cavanaugh | Jun 1917 | A |
1404029 | Kapp | Jan 1922 | A |
2461256 | Black | Feb 1949 | A |
3313507 | Belli | Apr 1967 | A |
3337880 | Florek | Aug 1967 | A |
3353778 | Sylvain et al. | Nov 1967 | A |
3588019 | Cozeck | Jun 1971 | A |
3664626 | Sneller | May 1972 | A |
3986694 | Nowak | Oct 1976 | A |
4032100 | Kahn | Jun 1977 | A |
4116373 | Bryngelson | Sep 1978 | A |
4140294 | Zwarts | Feb 1979 | A |
4141524 | Corvese, Jr. | Feb 1979 | A |
4185801 | Plymoth | Jan 1980 | A |
4270237 | Breeze et al. | Jun 1981 | A |
D261709 | Hartman | Nov 1981 | S |
D291175 | Rogers | Aug 1987 | S |
4727890 | Vincent | Mar 1988 | A |
4821988 | Jimenez | Apr 1989 | A |
4949924 | Carmody | Aug 1990 | A |
4967929 | Turner | Nov 1990 | A |
5173993 | Baker | Dec 1992 | A |
5240214 | Birnbaum et al. | Aug 1993 | A |
5368267 | Howard | Nov 1994 | A |
5618228 | Anderson | Apr 1997 | A |
5620059 | Crispeno | Apr 1997 | A |
5657884 | Zilincar, III | Aug 1997 | A |
5822918 | Helfman et al. | Oct 1998 | A |
5873433 | Katz | Feb 1999 | A |
6189748 | Hutter et al. | Feb 2001 | B1 |
6257537 | Williams | Jul 2001 | B1 |
6338459 | Biggs | Jan 2002 | B1 |
6398174 | Emalfarb | Jun 2002 | B1 |
6402108 | Remmers | Jun 2002 | B1 |
6481947 | Ortega | Nov 2002 | B2 |
6761465 | Little | Jul 2004 | B2 |
7354023 | Wappler | Apr 2008 | B1 |
D568727 | Walker et al. | May 2008 | S |
7735800 | Lunato et al. | Jun 2010 | B2 |
7815158 | Henderson | Oct 2010 | B2 |
8245991 | Hung | Aug 2012 | B2 |
20020003196 | Gibson et al. | Jan 2002 | A1 |
20020047077 | Gibson et al. | Apr 2002 | A1 |
20030080270 | Gibson et al. | May 2003 | A1 |
20030155475 | Hicks | Aug 2003 | A1 |
20030173483 | Yeh | Sep 2003 | A1 |
20040031891 | Augustin et al. | Feb 2004 | A1 |
20040060775 | Gibson et al. | Apr 2004 | A1 |
20050045785 | Cohen | Mar 2005 | A1 |
20070075198 | Foser | Apr 2007 | A1 |
20080031713 | Henderson | Feb 2008 | A1 |
20090067966 | Hicks | Mar 2009 | A1 |
20120079769 | Krause | Apr 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130240696 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61611814 | Mar 2012 | US |