Pivotal bone anchor assembly with biased bushing for pre-lock friction fit

Information

  • Patent Grant
  • 10349983
  • Patent Number
    10,349,983
  • Date Filed
    Friday, January 24, 2014
    10 years ago
  • Date Issued
    Tuesday, July 16, 2019
    4 years ago
Abstract
A spinal screw assembly providing an adjustable securement of a fixation rod across at least two vertebrae. The assembly includes a pedicle screw having a spherical head portion, a threaded shaft portion and a tool engagement surface in the head portion for use in driving the screw into a vertebrae. The head portion of the screw is positioned in a body member adjacent a curvilinear surface disposed about an aperture in the end of the body member such that the shaft portion of the screw extends therethrough and the curvilinear inner surface abuts and mates with the head portion of the screw so as to define a ball joint therewith. The body member additionally defines a pair of opposed parallel slots therein adapted to receive a portion of the fixation rod and a locking cap bears against the fixation rod to releasably secure the rod within the assembly.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to an apparatus for internal fixation of the spine and, more specifically to a novel locking mechanism for a variable angle spinal screw assembly that provides for easier implantation, a wide range of motion, ease of disassembly for adjustment or replacement of the stabilization rod and eliminates conventional threaded engagements and the crossover threading, torquing and other problems associated therewith.


Certain spinal conditions, including a fracture of a vertebra and a herniated disc, indicate treatment by spinal immobilization. Several methods of spinal joint immobilization are known, including surgical fusion and the attachment of pins and bone plates to the affected vertebras. One known device is a bone interface anchor inserted into at least two spaced-apart vertebras, with a stabilization rod interconnecting the two or more anchors to stabilize the vertebras spanned by the anchors. Specifically, a bone screw is received within a socket formed in the anchor. The anchor further includes a channel, extending perpendicular to the longitudinal axis of the bone screw, for receiving the stabilization rod. The anchor further comprises a threaded portion above the channel. After the bone screw and anchor have been inserted into the bone material, the rod is placed within the channel and a nut is mated with the external threads of the anchor. The nut applies a compressive force between the rod and the screw head to firmly fix the rod between the spanned vertebras and thus stabilize the spinal vertebrae.


During surgical implantation of these prior art stabilization systems, the surgical site is crowded with tissue masses, sponges and other surgical implements that obstruct access to the anchor threads. Given the difficult access, it is possible for the surgeon to cross-thread the nut with the threads of the anchor after the fixation rod is in place. If the threads of the anchor are cross-threaded, the cross-threaded coupling must be removed and replaced before the surgery can proceed. In addition, the threaded fastener (e.g., the nut) is frequently removed and then reinstalled as the surgeon makes progressive bends to contour the fixation rod. This increases the surgery with each on-off iteration and further increases the chances of cross-threading.


Another problem associated with threaded attachments is the torque exerted on the anchor during the tightening of the threaded fastener about the upper end portion of the fixation device. This torque can inadvertently introduce stress points along the rod, bend the rod or even loosen the threaded engagement of the anchor in the bone. The elimination of the conventional threaded attachments in the fixation device of the present invention also obviates these problems associated with torquing.


The angle at which the anchor screws extend from the vertebra pedicle is dictated by the spinal curvature, the orientation of individual vertebra within the spine, and the surgeon's placement of the screw within the pedicle. For example, there is considerable spinal curvature in the region of the S1-L5 vertebra junction and the angle between the longitudinal axis of the screws and the vertebra in that region vary over a wide range. Also, it may be necessary to displace one or more of the anchors from the spin midline to effectuate maximum spinal stabilization. Thus, the rod-receiving channels are typically not collinear nor coplanar and, the rod must be shaped or contoured by the surgeon during the implantation procedure to fit within the channels along the spinal column. The prior art systems allow the coupling unit to pivot with respect to the screw over a range of about .+−.20.degree. to .+−.30.degree., providing some margin for the surgeon to place the rod within the channel.


One challenge with current variable angle or polyaxial systems is aligning the coupling units in a manner that minimizes pre-insertion rod contouring while allowing the surgeon maximum range to optimize pedicle screw placement. This is especially challenging when fusing the S1-L5 junction. The prior art coupling units allow only a limited range of motion with respect to the screw head. The present invention allows a first range of motion in all directions, but also provides an extended range of motion in the medial--lateral--inferior direction (head-to-toe). This extended range of motion, as compared to the prior art, allows the surgeon additional freedom in locating the screws and eases the assembly process by reducing the requirement for rod contouring.


Thus, the present invention provides an extended range of motion as compared to the prior art, allowing the surgeon additional freedom in locating the screws and easing the assembly process by reducing the requirements for rod contouring. The present invention additionally eliminates the numerous problems heretofore experienced with threaded fasteners. The result is a significantly improved variable angle spinal screw assembly.


SUMMARY OF THE INVENTION

Briefly, the present invention comprises a variable angle spinal screw assembly for providing an adjustable securement of a stabilization rod between at least two spaced-apart vertebrae to effect internal fixation of the spine across the affected vertebrae. The assembly is used with at least one other such assembly to secure the fixation rod and includes a pedicle screw, a body member and a locking cap. The pedicle screw has a substantially spherical head portion defining a slot therein used to drive the screw into a vertebrae. The body member is generally cylindrical in configuration and is adapted to receive the head portion of the pedicle screw and cooperate therewith so as to define a modified ball joint to allow variable angular movement of the body member with respect to the pedicle screw with the threaded shaft portion of the screw extending through an opening in the inner end of the body member (or lower end as seen from the perspective shown in the drawings). The body member additionally defines a pair of opposed parallel slots axially disposed in the side wall thereof to receive a portion of the cylindrical fixation rod. The interior walls of the upper portion of the body member are provided with serrations defining a plurality of axially aligned ratchet teeth. The ratchet teeth are adapted to cooperate with opposed mating teeth formed on the outer surface of a locking cap such that upon pressing the locking cap downwardly within the body member of the assembly against the fixation rod and the rod against the head of the pedicle screw, the interlocking teeth will hold the cap in place and secure the fixation rod in place within the assembly. By rotating the locking cap with respect to the body member, the ratchet teeth are disengaged, relieving the pressure of the cap on the fixation rod and thus releasing the securement of the rod.


By providing the body member of the assembly with a rounded interior surface about the lower opening therein that mates with the rounded lower surface of the spherical screw head and with concave exterior surfaces on the underside of the body member about said opening, the angular orientation of the central axis of the body member relative to the pedicle screw is widely variable, providing an extended range of motion to facilitate surgical installation. Through the cooperation of the interlocking ratchet teeth on the body member and locking cap, installation is further facilitated and the disadvantages of conventional threaded fasteners are obviated.


In preferred embodiments of the present invention, a bushing is employed within the body member to better distribute the longitudinal forces exerted on the pedicle screw. The bushing can be of a generally cylindrical configuration, positioned adjacent the interior side wall of the body member and defines a seat for the fixation rod and a bifurcated depending skirt that abuts and mates with portions of the head of the pedicle screw upon being urged thereagainst by the locking cap pressing downwardly on the fixation rod. As a result, the force exerted on the screw is distributed about the head of the screw to improve the locking securement between the screw and the body member.


In addition, by providing a keyed interface between the pedicle screw head and the body member, the pedicle screw can be inserted into the bone by the surgeon unencumbered by the body member. The body member can then be aligned with the head of the embedded screw, slid onto and over the screw head, reoriented so as to mate the inner lower surface of the body member with the screw head to define the above-described modified ball joint and the resulting variable angle or polyaxial relationship. Such a keyed interface can be provided by a threaded engagement between the lower end of the body member and fixed screw head by which the body member can be screwed onto and over the head of the embedded screw. Alternatively, the screw head and body member opening can be multi-sided and configured so as to allow the body member to be slid over the screw head only when the two components are in a given alignment. Once the body member is slid over the head and rotated so as to misalign the respective sides, the body member is locked onto the screw head and the variable angle mating relationship therebetween is formed.


It is the principal object of the present invention to provide an improved securement of a fixation rod between two or more spaced-apart vertebrae to effect internal fixation of the spine across the affected vertebrae.


This and other objects and advantages of the present invention will be readily apparent from the following detailed description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of the variable angle spinal screw assembly of the present invention.



FIG. 2 is a perspective view of the bone screw portion of the assembly of the present invention.



FIGS. 3A and 3B are perspective views of the body member of the assembly of the present invention.



FIG. 4 is another perspective view of the body member of the present invention showing the lower surface thereof.



FIG. 5 is a perspective view of the bushing employed in the present invention.



FIGS. 6A and 6B are perspective views of a first embodiment of the cap of the present invention.



FIG. 7 is a second embodiment of the cap of the present invention.



FIG. 8 is a side view of the variable angle spinal screw assembly of the present invention.



FIG. 9A is a sectional view taken along the line A-A of FIG. 8



FIG. 9B is a sectional view taken along the line B-B of FIG. 8.



FIG. 10 is an exploded view of a modified form of the pedicle screw and body member employed in the present invention.



FIG. 11 is a perspective view of the modified pedicle screw and body member of FIG. 10 shown in the attached position prior to threading the body member over the screw head to form the mating relationship between the spherical lower portion of the screw head and the interior lower surface of the body member.



FIG. 12 is an exploded perspective view of another modified form of the pedicle screw and body member employed in the present invention.



FIG. 13 is a representational side view of the embodiment of the pedicle screw and body member shown in FIG. 12 with the body member on the screw in the mating variable angle position.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now in detail to the drawings, the variable angle spinal screw assembly 10 of the present invention comprises a pedicle screw 12, a body member 14, a bushing 16 and a locking cap 18. The assembly 10 is used with at least one other such assembly and a stabilization or fixation rod 19 to connect the assemblies and stabilize the vertebras into which the assemblies are inserted. The pedicle screw 12 preferably employed in assembly 10 has a spherical head 20 defining a slot 22 therein used to drive the screw into the bone. The rounded surface 24 defined by the lower portion of screw head 20 rests upon and mates with a rounded interior surface 26 formed in the inner or lower end of the body member 14 of the assembly 10 so as to form a modified ball joint that provides the desired variable angular movement of the body member with respect to the embedded pedicle screw. The threaded shaft portion 28 of screw 12 extends therefrom through the opening 30 in the lower end of body member 14.


The body member 14 of assembly 10 further defines a pair of opposed parallel slots 32 axially disposed in the side wall 34 thereof, which terminate at their lower ends in curvilinear surfaces 36. The two slots 32 are sized to receive the fixation rod therein as shown in the drawings with the walls 35 defining the slots preferably extending upwardly beyond the midpoint of the rod and can be inclined slightly to provide a slight holding force on the rod prior to securing the rod with the locking cap 18. Thus, during assembly, the surgeon exerts a slight downward force on the rod, snapping the rod into the transverse channel defined by the aligned slots 32.


The outer or upper interior surface of side walls 34 of the body member 14 both have radially projecting serrations formed therein defining a plurality of axially aligned ratchet teeth 38. The exterior bottom surface 40 of body member 14 has spaced outwardly extending concave surface 42 formed therein and a pair of perpendicularly disposed concave surfaces 44. Surfaces 42 and 44, together with mating surfaces 24 and 26 on the screw head and body member of the assembly, provide an extended range of motion of the body member 14 with respect to the pedicle screw 12. In one embodiment, the range of motion is about .+−.30.degree. in all directions (as measured from the longitudinal axis of the screw) and about .+−.40.degree. in the inferior-superior direction, the outwardly (as viewed from the screw head) concave surfaces provide the .+−.40.degree. range of motion, for a total motion range of 80.degree.. This extended range of motion, as compared to the prior art, allows the surgeon additional freedom in locating the screws and eases the assembly process by reducing the requirement for a rod contouring.


To secure the fixation rod 19 within the body member 14 of the assembly, locking cap 18 is provided. Cap 18 defines a top portion 48, a pair of opposed arcuate depending leg portions 50 and a centrally disposed depending projection 52 equidistantly spaced from leg portions 50. Central projection 52 preferably defines a planar lower or bottom surface 54. The leg portions 50 of cap 18 each have a plurality of radially projecting serrations formed therein that define a plurality of axially aligned ratchet teeth 56 adopted to engage teeth 38 on the opposed interior side walls 34 of the body member 14, as will be described


A bushing 16 is preferably employed within the body member 14 of the assembly 10 adjacent side walls 34 to better distribute the longitudinal forces exerted on the pedicle screw. Bushing 16 defines a pair of opposed concave surfaces 60 formed in the upper end of a circular skirt 62 so as to define a seat 64 for the fixation rod 19. The lower portion of bushing skirt 62 is slotted at 66 to provide flexibility therein and defines depending tapered end surfaces 68 adapted to abut opposed sides of the rounded screw head 20. A pair of outwardly projecting opposed resilient tabs 70 are provided at the upper ends of the bushing 16 between concave surfaces 60 that in some embodiments are adapted to be received in a snap fitment within a pair of opposed apertures (not shown) formed in the side wall 34 of body member 14 whereupon the rod seat 64 in bushing 16 is aligned with the channel in the body member. Note that in the illustrated embodiment shown in FIG. 3B, for example, the resilient tabs 70 will engage with the body member 14 inner cylindrical surface located below the ratchet teeth 38, the illustrated aperture 72 being located in the vicinity of the ratchet teeth 38 that cooperate with the locking cap 18 and thus at a distance from the bushing 16. Note that only one of apertures 72 is illustrated in FIGS. 3A and 3B to better illustrate the configuration of the ratchet teeth 38. In an alternative embodiment, the tabs could be removed from the bushing 16 and located on the body member 14 for engagement with apertures or other receiving structure or members formed in opposed sides of the bushing.


To provide a basic stability to the system during initial assembly, the bushing 16 with its slotted lower skirt portion can be configured to provide a press fitment about the screw head 20 so that the pedicle screw 12, body member 14 and bushing 16 will not move freely prior to the insertion and securement of the fixation rod. In addition, the upper portion of the bushing could be configured such that the wall surfaces 60 defining the rod seat 64 therein extend upwardly past the midpoint of the rod and are slightly inwardly inclined. This would provide the same slight holding force when the rod is pushed into the bushing seat 64 that was above described with reference to the channel walls 35 in the body member 14 of the assembly 10.


Upon securing the bushing 16 in the body member 14 and the fixation rod 12 in bushing seat 64, the locking cap 18 is positioned such that the depending leg portions 50 thereon are aligned with the side walls 34 of body member 14. Upon pressing the cap 18 downwardly into body member 14, the ratchet teeth 38 and 56 on the assembly body and cap interlock so as to allow the cap to be pressed downwardly but not retracted. As cap 18 is pressed downwardly into the body member of the assembly, the planar bottom surface 54 of the central projection 52 thereon abuts the fixation rod 19 and presses the rod into and against the seat 64 formed on the upper end of bushing 16. The resulting pressure on the bushing causes the tapered surfaces 68 on the lower end of the bushing to press against the rounded surface of the screw head 20, thereby securing the rod in seat 64 and providing a decentralized and evenly distributed force acting along the longitudinal axis of the screw. Thus, the use of bushing 16 creates a taper lock between the pedicle screw and body member and increases the area of contact therebetween. The result is an improved locking securement over that provided by the earlier described direct contact of the fixation rod against the upper end of the screw head.


The interlocked ratchet teeth will allow the surgeon to tighten the clamping force on the fixation rod by simply pressing downwardly on the locking cap 18. The teeth will hold the component parts in place. To adjust or remove the rod 19, the locking cap 18 is simply rotated 90 degrees about its longitudinal axis, whereupon the teeth 38 on the depending leg portions 50 of the cap are aligned with the open slots 32 in the body member 14, allowing the cap to be simply pulled upwardly away from the fixation rod 19. A hexagonally configured slot 71 is provided in the top portion 48 of cap 18 to facilitate the rotation of the locking cap with a suitably sized mating tool.


In use, at least two of the pedicle screws 12 with the body members 14 and attached bushings 16 disposed about the screw are inserted into the vertebra pedicles spanning the vertebra to be fixated. The surgeon preliminary contours the fixation rod and checks the alignment between the rod and the mating channels formed by the slots in the bushing and body member of the assemblies. Since additional contouring is usually required to improve the alignment, the surgeon incrementally adjusts the rod shape and checks the fit within the channels until the rod properly fits in all channels. During the contouring process, a locking cap 18 can be mated with one or more of the body member 14 (by pressing the cap axially into the body member to create the interlock between the ratchet teeth on the body member and the cap) to temporarily hold the rod in place, thereby assisting the surgeon in achieving an accurate fit. The locking caps are then easily removable (by rotating the cap a quarter of a turn to disengage the interlocking teeth), allowing the rod to be further contoured. Once properly contoured, the rod is inserted into the channels and a locking cap is pressed tightly into each body member and bushing to secure the rod in place. To effect securement of the rod at each of the pedicle screw assemblies, it is solely necessary to press the locking cap longitudinally into the body member such that the bottom surface 54 of the central projection 52 on the cap presses against the fixation rod 19, causing the rod to press downwardly against the bushing 16, which in turn mates with and presses against the head of the pedicle screw.


A modified form of the variable angle spinal screw assembly is illustrated in FIGS. 10 and 11. This modified form of the assembly enables the surgeon to insert the pedicle screw in the bone, by itself, unencumbered by the body member. In the prior embodiment, the pedicle screw 12 must be inserted through the body member 14 before the screw can be driven into the bone. With the body member attached, securement of the screw into the bone can be somewhat difficult. In the modified assembly 100, the outer surface of the spherical head portion 120 of the pedicle screw 112 is provided with threads 121, as seen in FIG. 10. As in the prior embodiment, the upper end of head portion 120 is provided with a vertical slot 122 used to drive the screw into place. The lower interior portion 113 of the body member 114 to be used with the modified pedicle screw 112 is provided with threads 115 adapted to engage threads 121 on the screw. As a result, the body member 114 can be threaded onto (see FIG. 11) and over the head 120 of the screw 112 after the screw is driven into place. With the exception of threads 121 and 115, the pedicle screw 112 and body member 114 are identical in configuration to the screw 12 and body member 14 of the prior embodiment. Thus, after the body member 114 is threaded onto and over the screw head and is disposed within the interior of the lower end of body member 114, as seen in FIG. 11, the variable angular relationship therebetween is formed as in the prior embodiment.


A second modified form of the variable angle spinal screw assembly that enables the surgeon to insert the pedicle screw in the bone, by itself, unencumbered by the body member is illustrated in FIGS. 12 and 13. As seen therein, the mating threads on the pedicle screw 112 and body member 114 have been replaced with mating octagonal surfaces. In this second modified assembly 200, the outer surface of the spherical head portion 220 of the screw 212 is provided with an octagonal portion. The octagonal portion is comprised of eight contact surfaces 221, one of which (e.g. 221a) is unequal in length to the remaining surfaces. The lower interior portion 213 of the body member 214 to be used with the modified pedicle screw 212 is also provided with an octagonally configured portion adapted to engage and mate with the octagonal surfaces on the screw head. Because of the inclusion of a differently-sized surface on both the screw and body member, the pedicle screw 212 will only align with the body member 214 in only one position, i.e., where the shortened contact surface on the screw head is aligned with the correspondingly shortened surface in the lower interior of the body member. Accordingly, the pedicle screw 212 can again be inserted into the bone without being attached to the body member 214. After the screw 212 is driven into place, the body member 214 can be inserted over the screw head with the octagonal surfaces thereon aligned with the corresponding surfaces on the screw head. By pressing the screw body downwardly, it is completely inserted onto the screw head and the mating octagonal surfaces are moved out of engagement. Upon rotating the body member and pulling upwardly on the body member, such that the head is disposed within the interior of the lower end of body member 214 the variable angular relationship therebetween illustrated in FIG. 13 is formed as in the prior embodiments. It is to be understood that this form of the present invention is not limited to the use of mating octagonal surfaces. Any polygonal configuration could be employed on the screw head and body member wherein at least one of the mating surfaces on the screw head and on the body member is correspondingly off-sized or otherwise differently configured from the remaining surfaces on the screw head and body member.


In another embodiment of the invention, the bushing 16 is not employed. The opposed axial slots 32 in the side wall 34 of the body member of the assembly define a seat for the fixation rod 19. When the locking cap is pressed into the body member with the fixation rod extending thereacross, the planar bottom surface 54 of the central projection 52 again abuts the fixation rod and, in this instance, presses the rod against the upper end of the head of the pedicle screw. For such applications, the body member and pedicle screw would be sized such that the upper surface of the screw would project above the bottom of the seat defined by the axially opposed slots 32 so as to enable the rod to press against the screw and create a rigid, yet adjustable, securement between the body member and the pedicle screw. This embodiment can also be utilized with the modified forms of the pedicle screw 128 and body member 114 shown in FIGS. 10 and 11. In all of these embodiments, the components of the variable angle spinal screw assembly are preferably formed of titanium.


It should be noted that while the preferred configuration of the locking cap provides a rounded and flush mounting on the upper ends of the body member 14 when the locking cap is fully inserted against the fixation rod, other locking cap configurations could be employed. For example, FIG. 7 illustrates a locking cap having a generally cylindrical perimeter portion in which the ratchet teeth 56 project radially therefrom along leg portions 50. This configuration is illustrated in FIG. 1. As a result, the upper end of the locking cap would be inwardly offset from the upper end of the body member without adversely effecting the operation of the variable angle spinal screw assembly. Various other changes and modifications also could be made in carrying out the present invention.


Although the present invention has been described by way of exemplary embodiments, it should be understood that many changes and substitutions may be made by those skilled in the art without departing from the spirit and the scope of the present invention, which is defined by the appended claims.

Claims
  • 1. A spinal screw assembly for securing a fixation rod to a bone, the spinal screw assembly comprising: a body member having a base defining an axial bore formed around a longitudinal axis with a lower opening in communication with a bottom of the body member, and a pair of arms extending upward from the base to define an open channel for receiving the fixation rod, the open channel being in communication with the axial bore, the axial bore including a rounded interior seating surface disposed about the lower opening and a non-threaded internal recess with a downwardly facing surface above the lower opening;a screw having a threaded shaft and a head disposed within the body member axial bore with the shaft extending downward through the lower opening, the screw head having a spherical outer surface with a single constant radius extending above and below a hemisphere plane to define an upper hemisphere and a lower hemisphere above and below the hemisphere plane, respectively, the spherical outer surface being slidably engagable with the axial bore rounded interior seating surface so as to allow variable angular movement of the screw relative to the body member during assembly; anda bushing snapped into the recess and having a portion with a slot in direct biased engagement with the screw head spherical outer surface,wherein the bushing provides a press fitment directly on the screw head so that the screw head spherical outer surface is held downwardly against the rounded interior seating surface in a frictional engagement to inhibit the screw and the body member from moving freely with respect to each other prior to the insertion and securement of the fixation rod with a closure to lock the assembly from any further variable angle movement.
  • 2. The spinal screw assembly of claim 1, wherein the bushing is top loaded into the body member and resiliently snapped into the internal recess with the recess downwardly facing surface at least partially overlapping a top surface of the bushing to prevent the bushing from moving back up within the axial bore of the body member.
  • 3. The spinal screw assembly of claim 1, wherein the slotted portion of the bushing extends from an outer surface to an inner surface of the bushing and further extends from a bottom surface of the bushing in a direction that is generally more vertical than horizontal with respect to a longitudinal center axis through the bushing.
  • 4. The spinal screw assembly of claim 3, wherein the slotted portion of the bushing extends in a direction that is parallel with respect to the longitudinal center axis.
  • 5. The spinal screw assembly of claim 1, wherein when the longitudinal axis of the body member and a longitudinal axis of the screw shaft are co-aligned, the bushing applies a downwardly directed pressure onto only the upper hemisphere of the screw head to bias the lower hemisphere of the screw head into the frictional engagement with the axial bore rounded interior seating surface, thereby inhibiting the screw and the body member from moving freely with respect to each other prior to the insertion and securement of the fixation rod with the closure.
  • 6. The spinal screw assembly of claim 5, wherein the bushing is above and spaced apart from the lower hemisphere of the screw head.
  • 7. The spinal screw assembly of claim 1, wherein the bushing is above and spaced from the axial bore rounded interior seating surface.
  • 8. The spinal screw assembly of claim 1, wherein the bushing at least partially inhibits the screw head from moving upwards within the body member.
  • 9. The spinal screw assembly of claim 1, wherein the screw is downloaded into the body member until the screw head slidably engages the axial bore rounded interior seating surface.
  • 10. The spinal screw assembly of claim 1, wherein the bushing is configured to snap into the internal recess formed into the body member axial bore above the lower opening upon insertion into the axial bore to retain the bushing within the body member prior to the shank head being disposed within the axial bore.
  • 11. The spinal screw assembly of claim 1, wherein the body member has a first of a projecting structure and a receiving aperture for the projecting structure, the bushing having a second of the projecting structure and the receiving aperture for the projecting structure, such that when the bushing is located within the body member axial bore, the projecting structure engages the receiving aperture to maintain proper alignment of the bushing with the body member.
  • 12. The spinal screw assembly of claim 1, wherein the slotted portion of the bushing is positioned directly below the fixation rod.
  • 13. The spinal screw assembly of claim 12, wherein the bushing further comprises a circular skirt having an upper portion with a pair of opposed interior concave wall surfaces formed therein to define a rod seat for engaging the fixation rod.
  • 14. The spinal screw assembly of claim 13, wherein the pair of opposed interior concave wall surfaces defining the rod seat extend upwardly past a midpoint of the fixation rod and are slightly inwardly inclined to provide a holding force when the fixation rod is pushed into the rod seat.
  • 15. The spinal screw assembly of claim 13, further comprising a locking cap that, when joined with the body member in a fully assembled configuration around the fixation rod, bears against the fixation rod which in turn bears against the rod seat of the bushing to apply pressure to the screw head and press the screw head against the rounded interior seating surface of the body member so as to fix an angular position of the screw relative to the body member.
  • 16. The spinal screw assembly of claim 1, wherein the lower opening includes at least a partial thread formed therein.
  • 17. The spinal screw assembly of claim 1, wherein the non-threaded internal recess further comprises a pair of opposed apertures.
  • 18. The spinal screw assembly of claim 1, wherein the body member has a bottom surface that is at least partially sloped so as to be non-perpendicular with respect to the longitudinal axis to provide for increased angular movement in at least one direction for the screw relative to the body member.
  • 19. The spinal screw assembly of claim 1, wherein the body member pair of arms have outwardly facing planar surfaces that are parallel with respect to each other and with respect to the longitudinal axis.
  • 20. The spinal screw assembly of claim 1, wherein the closure further includes at least one loading flank surface perpendicular to the longitudinal axis of the body member and configured to lock the screw assembly.
  • 21. The spinal screw assembly of claim 1, wherein the screw head has an internal tool engaging recess to screw the threaded shaft into the bone.
  • 22. The spinal screw assembly of claim 1, wherein the closure includes a centrally disposed downwardly depending projecting structure that defines a planar bottom surface to compressively engage the fixation rod.
  • 23. The spinal screw assembly of claim 22, wherein the centrally disposed downwardly depending projecting structure is integral with the closure.
  • 24. The spinal screw assembly of claim 1, wherein after the bushing is snapped into the internal recess of the body member, the recess is configured to prevent the bushing from interfering with a locking function of the closure.
  • 25. A spinal screw assembly for securing a fixation rod to a bone, the spinal screw assembly comprising: a body member having a base defining an axial bore formed around a longitudinal axis with a lower opening in communication with a bottom of the body member, and a pair of arms extending upward from the base to define an open channel for receiving the fixation rod, the open channel being in communication with the axial bore, the axial bore including a rounded interior surface disposed about the lower opening and a non-threaded internal recess above the lower opening;a screw having a threaded shaft and a head disposed within the body member axial bore with the shaft extending downward through the lower opening, the screw head having an at least partially spherical outer surface that is slidably engagable with the axial bore rounded interior surface so as to allow variable angular movement of the screw relative to the body member during assembly; anda biasing member disposed within the body member axial bore and having at least an outer surface portion positioned within the recess and a discontinuous inner surface portion in direct biased engagement with the screw head outer surface prior to the insertion and securement of the fixation rod with a closure,wherein the direct biased engagement provides a press fitment on the screw head that urges the screw head downwardly into a frictional engagement with the body member rounded interior surface and thereby inhibits the screw and the body member from moving freely with respect to each other prior to a locking of the assembly with the closure.
  • 26. The spinal screw assembly of claim 25, wherein the biasing member discontinuous inner surface portion in direct biased engagement with the screw head at least partially spherical outer surface is further defined by a slot or gap.
  • 27. The spinal screw assembly of claim 26, wherein the slot or gap extends from a biasing member inner surface to an outer surface and further extends from a bottom surface of the biasing member in a direction that is generally more vertical than horizontal with respect to a longitudinal center axis through the biasing member.
  • 28. The spinal screw assembly of claim 25, wherein the biasing member is snapped into the internal recess.
  • 29. The spinal screw assembly of claim 28, wherein the biasing member is snapped into the internal recess prior to the screw head being disposed within the body member axial bore.
  • 30. The spinal screw assembly of claim 29, wherein the screw head is disposed within the body member axial bore through the lower opening.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. patent application Ser. No. 13/507,857, filed Aug. 2, 2012, now U.S. Pat. No. 8,636,775, which was a Continuation of U.S. patent application Ser. No. 12/154,448, filed May 23, 2008, now U.S. Pat. No. 8,298,265, that was a continuation of U.S. patent application Ser. No. 10/848,946, filed May 19, 2004, now U.S. Pat. No. 7,377,923 that claimed the benefit of U.S. Provisional Application No. 60/472,578, filed May 22, 2003 and U.S. Provisional Application No. 60/527,060, filed Dec. 4, 2003, all of which are incorporated by reference herein.

US Referenced Citations (1248)
Number Name Date Kind
154864 Harvey Sep 1874 A
791548 Fischer Jun 1905 A
1300275 Johnson Apr 1919 A
1330673 Anderson Feb 1920 A
1472464 Ellison Oct 1923 A
2083092 Richer Jun 1937 A
2201087 Hallowell May 1940 A
2239352 Cherry Apr 1941 A
2243717 Moreira May 1941 A
2295314 Whitney Sep 1942 A
2346346 Anderson Apr 1944 A
2362999 Elmer Nov 1944 A
2445978 Stellin Jul 1948 A
2531892 Reese Nov 1950 A
2532815 Kindsvatter et al. Dec 1950 A
2537029 Cambern Jan 1951 A
2553337 Shafer May 1951 A
2778265 Brown Jan 1957 A
2813450 Dzus Nov 1957 A
2877681 Brown Mar 1959 A
2927332 Moore Mar 1960 A
2969250 Kull Jan 1961 A
3013244 Rudy Dec 1961 A
3143029 Brown Aug 1964 A
D200217 Curtiss Feb 1965 S
3236275 Smith Feb 1966 A
3370341 Allsop Feb 1968 A
3444775 Hills May 1969 A
3498174 Schuster et al. Mar 1970 A
3584667 Reiland Jun 1971 A
3604487 Gilbert Sep 1971 A
3640416 Temple Feb 1972 A
3812757 Reiland May 1974 A
3963322 Gryctko Jun 1976 A
3989284 Blose Nov 1976 A
3997138 Crock et al. Dec 1976 A
4013071 Rosenberg Mar 1977 A
4033139 Frederick Jul 1977 A
4041939 Hall Aug 1977 A
4103422 Weiss et al. Aug 1978 A
4190091 Colognori Feb 1980 A
4269246 Larson et al. May 1981 A
4347845 Mayfield Sep 1982 A
4369769 Edwards Jan 1983 A
4373754 Bollfrass et al. Feb 1983 A
4409968 Drummond Oct 1983 A
4448191 Rodnyansky et al. May 1984 A
4484570 Sutter et al. Nov 1984 A
4492500 Ewing Jan 1985 A
4506917 Hansen Mar 1985 A
4577448 Howorth Mar 1986 A
4600224 Blose Jul 1986 A
4600225 Blose Jul 1986 A
4641636 Cotrel Feb 1987 A
4653481 Howland et al. Mar 1987 A
4653486 Coker Mar 1987 A
4703954 Ortloff et al. Nov 1987 A
4707001 Johnson Nov 1987 A
4743260 Burton May 1988 A
4748260 Marlett May 1988 A
4759672 Nilsen et al. Jul 1988 A
4763644 Webb Aug 1988 A
4764068 Crispell Aug 1988 A
4790297 Luque Dec 1988 A
4805602 Puno et al. Feb 1989 A
4815453 Cotrel Mar 1989 A
4836196 Park et al. Jun 1989 A
4838264 Bremer et al. Jun 1989 A
4850775 Lee et al. Jul 1989 A
4877020 Vich Oct 1989 A
4887596 Sherman Dec 1989 A
4917606 Miller Apr 1990 A
4946458 Harms et al. Aug 1990 A
4950269 Gaines, Jr. Aug 1990 A
4961740 Ray et al. Oct 1990 A
5005562 Cotrel Apr 1991 A
5019080 Hemer May 1991 A
5022791 Isler Jun 1991 A
5034011 Howland Jul 1991 A
5042982 Harms et al. Aug 1991 A
5056492 Banse Oct 1991 A
5067428 Dickerson et al. Nov 1991 A
5067955 Cotrel Nov 1991 A
5073074 Corrigan et al. Dec 1991 A
5084048 Jacob et al. Jan 1992 A
5092635 DeLange et al. Mar 1992 A
5102412 Rogozinski Apr 1992 A
5129388 Vignaud et al. Jul 1992 A
5129899 Small et al. Jul 1992 A
5147360 Dubousset Sep 1992 A
5147363 Harle Sep 1992 A
5154719 Cotrel Oct 1992 A
5176483 Baumann et al. Jan 1993 A
5176678 Tsou Jan 1993 A
5176679 Lin Jan 1993 A
5176680 Vignaud et al. Jan 1993 A
5180393 Commarmond Jan 1993 A
5201734 Cozad et al. Apr 1993 A
5207678 Harms et al. May 1993 A
5217497 Mehdian Jun 1993 A
5257993 Asher et al. Nov 1993 A
5261907 Vignaud et al. Nov 1993 A
5263953 Bagby Nov 1993 A
5275601 Gogolewski et al. Jan 1994 A
5282707 Palm Feb 1994 A
5282862 Barker et al. Feb 1994 A
5282863 Burton Feb 1994 A
5306275 Bryan Apr 1994 A
5312404 Asher et al. May 1994 A
5321901 Kelly Jun 1994 A
5330472 Metz-Stavenhagen Jul 1994 A
5334203 Wagner Aug 1994 A
5346493 Stahurski et al. Sep 1994 A
5354292 Braeuer et al. Oct 1994 A
5354299 Coleman Oct 1994 A
5358289 Banker et al. Oct 1994 A
5360431 Puno et al. Nov 1994 A
5364400 Rego, Jr. et al. Nov 1994 A
5375823 Navas Dec 1994 A
5382248 Jacobson et al. Jan 1995 A
5385583 Cotrel Jan 1995 A
5387211 Saadatmanesh et al. Feb 1995 A
5387212 Yuan et al. Feb 1995 A
5395371 Miller et al. Mar 1995 A
5409488 Ulrich Apr 1995 A
5409489 Sioufi Apr 1995 A
5415661 Holmes May 1995 A
5423816 Lin Jun 1995 A
5427418 Watts Jun 1995 A
5429639 Judet Jul 1995 A
5434001 Yamada et al. Jul 1995 A
5443467 Biedermann et al. Aug 1995 A
5466237 Byrd, III et al. Nov 1995 A
5466238 Lin Nov 1995 A
5468241 Metz-Stavenhagen et al. Nov 1995 A
5474551 Finn et al. Dec 1995 A
5474555 Puno et al. Dec 1995 A
5476462 Allard et al. Dec 1995 A
5476464 Metz-Stavenhagen et al. Dec 1995 A
5480401 Navas Jan 1996 A
5484440 Allard Jan 1996 A
5487742 Cotrel Jan 1996 A
5489307 Kuslich et al. Feb 1996 A
5490750 Gundy Feb 1996 A
5499892 Reed Mar 1996 A
5501684 Schlapfer et al. Mar 1996 A
5505731 Tornier Apr 1996 A
5507745 Logroscino et al. Apr 1996 A
5507747 Yuan et al. Apr 1996 A
5534001 Schlapfer et al. Jul 1996 A
5540688 Navas Jul 1996 A
5545165 Biedermann et al. Aug 1996 A
5549607 Olson et al. Aug 1996 A
5549608 Errico et al. Aug 1996 A
5554157 Errico et al. Sep 1996 A
5562660 Grob Oct 1996 A
5562663 Wisnewski et al. Oct 1996 A
5569247 Morrison Oct 1996 A
5569251 Baker et al. Oct 1996 A
5578033 Errico et al. Nov 1996 A
5584834 Errico et al. Dec 1996 A
5586984 Errico et al. Dec 1996 A
5591166 Bernhardt et al. Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5605458 Bailey et al. Feb 1997 A
5607304 Bailey et al. Mar 1997 A
5607425 Rogozinski Mar 1997 A
5607426 Ralph et al. Mar 1997 A
5607428 Lin Mar 1997 A
5609593 Errico et al. Mar 1997 A
5609594 Errico et al. Mar 1997 A
5611800 Davis et al. Mar 1997 A
5628740 Mullane May 1997 A
5630817 Rokegem May 1997 A
5641256 Gundy Jun 1997 A
5643260 Doherty Jul 1997 A
5643261 Schaefer et al. Jul 1997 A
5647873 Errico et al. Jul 1997 A
5653710 Harle Aug 1997 A
5662652 Schaefer et al. Sep 1997 A
5662653 Songer et al. Sep 1997 A
5667508 Errico et al. Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5669911 Errico et al. Sep 1997 A
5672175 Martin Sep 1997 A
5672176 Biedermann Sep 1997 A
5676665 Bryan Oct 1997 A
5676703 Gelbard Oct 1997 A
5681319 Biedermann et al. Oct 1997 A
5683390 Metz-Stavenhagen et al. Nov 1997 A
5683391 Boyd Nov 1997 A
5690630 Errico et al. Nov 1997 A
5702393 Pfaifer Dec 1997 A
5711709 McCoy Jan 1998 A
5713705 Grunbichler Feb 1998 A
5713898 Stuecker et al. Feb 1998 A
5716356 Biedermann et al. Feb 1998 A
5720751 Jackson Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725527 Biedermann et al. Mar 1998 A
5725528 Errico et al. Mar 1998 A
5728098 Sherman et al. Mar 1998 A
5733286 Errico et al. Mar 1998 A
5738685 Halm et al. Apr 1998 A
5741254 Henry et al. Apr 1998 A
5752957 Ralph et al. May 1998 A
5782833 Haider Jul 1998 A
5797911 Sherman et al. Aug 1998 A
5800435 Errico et al. Sep 1998 A
5800547 Schaefer et al. Sep 1998 A
5817094 Errico et al. Oct 1998 A
5863293 Richelsoph Jan 1999 A
5873878 Harms et al. Feb 1999 A
D407302 Lawson Mar 1999 S
5876402 Errico et al. Mar 1999 A
5879351 Viart Mar 1999 A
5882350 Ralph et al. Mar 1999 A
5902303 Eckhof et al. May 1999 A
RE36221 Breard et al. Jun 1999 E
5910141 Morrison et al. Jun 1999 A
5910142 Tatar Jun 1999 A
5928236 Augagneur et al. Jul 1999 A
5938663 Petreto Aug 1999 A
5941880 Errico et al. Aug 1999 A
5944465 Janitzki Aug 1999 A
5951553 Betz et al. Sep 1999 A
5961517 Biedermann et al. Oct 1999 A
5964760 Richelsoph Oct 1999 A
5964767 Tapia et al. Oct 1999 A
5997539 Errico et al. Dec 1999 A
6001098 Metz-Stavenhagen et al. Dec 1999 A
6004349 Jackson Dec 1999 A
6010503 Richelsoph et al. Jan 2000 A
6019759 Rogozinski Feb 2000 A
6022350 Ganem Feb 2000 A
6053078 Parker Apr 2000 A
6056753 Jackson May 2000 A
6063088 Winslow May 2000 A
6074391 Metz-Stavenhagen et al. Jun 2000 A
6077262 Schlapfer et al. Jun 2000 A
6086588 Ameil et al. Jul 2000 A
6090110 Metz-Stavenhagen Jul 2000 A
6090111 Nichols Jul 2000 A
6099528 Saurat Aug 2000 A
6110172 Jackson Aug 2000 A
6113601 Tatar Sep 2000 A
6117137 Halm et al. Sep 2000 A
6129763 Chauvin et al. Oct 2000 A
6132431 Nilsson et al. Oct 2000 A
6136002 Shih et al. Oct 2000 A
6136003 Hoeck et al. Oct 2000 A
6143032 Schaefer et al. Nov 2000 A
6146383 Studer et al. Nov 2000 A
6149533 Finn Nov 2000 A
6162223 Orsak et al. Dec 2000 A
6168597 Biedermann et al. Jan 2001 B1
6183472 Lutz Feb 2001 B1
6186718 Fogard Feb 2001 B1
6193719 Gournay et al. Feb 2001 B1
6193720 Yuan et al. Feb 2001 B1
6214012 Karpman et al. Apr 2001 B1
RE37161 Michelson et al. May 2001 E
6224596 Jackson May 2001 B1
6224598 Jackson May 2001 B1
6235028 Brumfield et al. May 2001 B1
6235034 Bray May 2001 B1
6241730 Alby Jun 2001 B1
6241731 Fiz Jun 2001 B1
6248105 Schlapfer et al. Jun 2001 B1
6248107 Foley et al. Jun 2001 B1
6251112 Jackson Jun 2001 B1
6254602 Justis Jul 2001 B1
6261039 Reed Jul 2001 B1
6267764 Elberg Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6280445 Morrison et al. Aug 2001 B1
6287308 Betz et al. Sep 2001 B1
6296643 Hopf et al. Oct 2001 B1
6299613 Ogilvie et al. Oct 2001 B1
6299616 Beger Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6309391 Crandall et al. Oct 2001 B1
6315564 Levisman Nov 2001 B1
6322108 Riesselmann et al. Nov 2001 B1
RE37665 Ralph et al. Apr 2002 E
6368321 Jackson Apr 2002 B1
6379356 Jackson Apr 2002 B1
6402757 Moore et al. Jun 2002 B1
6440133 Beale et al. Aug 2002 B1
6443956 Ray Sep 2002 B1
6467958 Sasaki et al. Oct 2002 B1
6471703 Ashman Oct 2002 B1
6478797 Paul Nov 2002 B1
6478798 Howland Nov 2002 B1
6485491 Farris et al. Nov 2002 B1
6485492 Halm et al. Nov 2002 B1
6485494 Haider Nov 2002 B1
6520962 Taylor et al. Feb 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6533786 Needham et al. Mar 2003 B1
6554831 Rivard et al. Apr 2003 B1
6554834 Crozet et al. Apr 2003 B1
6562040 Wagner May 2003 B1
6565565 Yuan et al. May 2003 B1
6565567 Haider May 2003 B1
6595992 Wagner et al. Jul 2003 B1
6602255 Campbell et al. Aug 2003 B1
6613050 Wagner et al. Sep 2003 B1
6616667 Steiger et al. Sep 2003 B1
6648885 Friesem Nov 2003 B1
6648888 Shluzas Nov 2003 B1
6652526 Arafiles Nov 2003 B1
6652765 Beaty Nov 2003 B1
6656179 Schaefer et al. Dec 2003 B1
6663632 Frigg Dec 2003 B1
6673073 Schaefer Jan 2004 B1
6676661 Benlloch et al. Jan 2004 B1
6712818 Michelson Mar 2004 B1
6716214 Jackson Apr 2004 B1
6743231 Gray et al. Jun 2004 B1
6755829 Bono et al. Jun 2004 B1
6778861 Liebrecht et al. Aug 2004 B1
6872208 McBride et al. Mar 2005 B1
6896677 Lin May 2005 B1
7001389 Navarro et al. Feb 2006 B1
RE39035 Finn et al. Mar 2006 E
RE39089 Ralph et al. May 2006 E
7081116 Carly Jul 2006 B1
7316684 Baccelli et al. Jan 2008 B1
7377923 Purcell et al. May 2008 B2
7686833 Muhanna et al. Mar 2010 B1
7766943 Fallin et al. Aug 2010 B1
7833251 Ahlgren et al. Nov 2010 B1
8043340 Law Oct 2011 B1
8092499 Roth Jan 2012 B1
8167914 Hunt et al. May 2012 B1
8197517 Lab et al. Jun 2012 B1
8211110 Corin et al. Jul 2012 B1
8236035 Bedor Aug 2012 B1
8298265 Purcell et al. Oct 2012 B2
8388659 Lab et al. Mar 2013 B1
8439924 McBride et al. May 2013 B1
8470009 Rezach Jun 2013 B1
8636775 Purcell et al. Jan 2014 B2
20010007941 Steiner et al. Jul 2001 A1
20010010000 Gertzbein et al. Jul 2001 A1
20010011172 Orbay et al. Aug 2001 A1
20010012937 Schaffler-Wachter et al. Aug 2001 A1
20010023350 Choi Sep 2001 A1
20010037111 Dixon et al. Nov 2001 A1
20010041894 Campbell et al. Nov 2001 A1
20010047173 Schlapfer et al. Nov 2001 A1
20010047174 Donno et al. Nov 2001 A1
20010047175 Doubler et al. Nov 2001 A1
20010052438 Spencer Dec 2001 A1
20020004683 Michelson Jan 2002 A1
20020007184 Ogilvie et al. Jan 2002 A1
20020010467 Cooper et al. Jan 2002 A1
20020013586 Justis et al. Jan 2002 A1
20020016594 Schlapfer et al. Feb 2002 A1
20020022764 Smith et al. Feb 2002 A1
20020022842 Horvath et al. Feb 2002 A1
20020029040 Morrison et al. Mar 2002 A1
20020035365 Kumar et al. Mar 2002 A1
20020035366 Walder et al. Mar 2002 A1
20020035367 Ritland Mar 2002 A1
20020045898 Freid et al. Apr 2002 A1
20020045899 Errico et al. Apr 2002 A1
20020049446 Harkey, III et al. Apr 2002 A1
20020055740 Lieberman May 2002 A1
20020055741 Schlapfer et al. May 2002 A1
20020058942 Biedermann et al. May 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020072750 Jackson Jun 2002 A1
20020072751 Jackson Jun 2002 A1
20020082602 Biedermann et al. Jun 2002 A1
20020082603 Dixon et al. Jun 2002 A1
20020087159 Thomas Jul 2002 A1
20020087161 Randall et al. Jul 2002 A1
20020091386 Martin et al. Jul 2002 A1
20020095153 Jones et al. Jul 2002 A1
20020095154 Atkinson et al. Jul 2002 A1
20020095881 Shreiner Jul 2002 A1
20020103487 Errico et al. Aug 2002 A1
20020111627 Vincent-Prestigiancomo Aug 2002 A1
20020116001 Schaefer et al. Aug 2002 A1
20020120270 Trieu et al. Aug 2002 A1
20020123752 Schultheiss et al. Sep 2002 A1
20020133154 Saint Martin Sep 2002 A1
20020133158 Saint Martin Sep 2002 A1
20020133159 Jackson Sep 2002 A1
20020138076 Biedermann et al. Sep 2002 A1
20020138077 Ferree Sep 2002 A1
20020143328 Shluzas et al. Oct 2002 A1
20020143330 Shluzas Oct 2002 A1
20020143332 Lin et al. Oct 2002 A1
20020143338 Orbay et al. Oct 2002 A1
20020143341 Biedermann et al. Oct 2002 A1
20020161368 Foley et al. Oct 2002 A1
20020161370 Frigg et al. Oct 2002 A1
20020173791 Howland Nov 2002 A1
20020183747 Jao et al. Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030004519 Torode et al. Jan 2003 A1
20030023243 Biedermann et al. Jan 2003 A1
20030028191 Shluzas Feb 2003 A1
20030032957 McKinley Feb 2003 A1
20030055426 Carbone et al. Mar 2003 A1
20030055427 Graf Mar 2003 A1
20030060826 Foley et al. Mar 2003 A1
20030073995 Reed Apr 2003 A1
20030073996 Doubler et al. Apr 2003 A1
20030073998 Pagliuca et al. Apr 2003 A1
20030078580 Shitoto Apr 2003 A1
20030083657 Drewry et al. May 2003 A1
20030083667 Ralph et al. May 2003 A1
20030093077 Schlapfer et al. May 2003 A1
20030093078 Ritland May 2003 A1
20030100896 Biedermann et al. May 2003 A1
20030100897 Metz-Stavenhagen May 2003 A1
20030100904 Biedermann May 2003 A1
20030105460 Crandall et al. Jun 2003 A1
20030109880 Shirado et al. Jun 2003 A1
20030114852 Biedermann et al. Jun 2003 A1
20030120275 Lenke et al. Jun 2003 A1
20030125741 Biedermann et al. Jul 2003 A1
20030125749 Yuan et al. Jul 2003 A1
20030130659 Haider Jul 2003 A1
20030130661 Osman Jul 2003 A1
20030135210 Dixon et al. Jul 2003 A1
20030135217 Buttermann et al. Jul 2003 A1
20030139745 Ashman Jul 2003 A1
20030149431 Varieur Aug 2003 A1
20030149432 Frigg et al. Aug 2003 A1
20030149435 Baynham et al. Aug 2003 A1
20030153911 Shluzas Aug 2003 A1
20030153912 Graf Aug 2003 A1
20030153920 Ralph et al. Aug 2003 A1
20030163133 Altarac et al. Aug 2003 A1
20030167058 Shluzas Sep 2003 A1
20030171749 Le Couedic et al. Sep 2003 A1
20030176863 Ueyama et al. Sep 2003 A1
20030181913 Lieberman Sep 2003 A1
20030187433 Lin Oct 2003 A1
20030187434 Lin Oct 2003 A1
20030191470 Ritland Oct 2003 A1
20030199872 Markworth et al. Oct 2003 A1
20030199873 Richelsoph Oct 2003 A1
20030208204 Bailey et al. Nov 2003 A1
20030212398 Jackson Nov 2003 A1
20030216735 Altarac et al. Nov 2003 A1
20030220642 Freudiger Nov 2003 A1
20030220643 Ferree Nov 2003 A1
20030225408 Nichols et al. Dec 2003 A1
20030229345 Stahurski Dec 2003 A1
20030229347 Sherman et al. Dec 2003 A1
20030236529 Shluzas et al. Dec 2003 A1
20040006342 Altarac et al. Jan 2004 A1
20040039384 Boehm, Jr. et al. Feb 2004 A1
20040039385 Mazda et al. Feb 2004 A1
20040049189 Le Couedic et al. Mar 2004 A1
20040049190 Biedermann et al. Mar 2004 A1
20040073215 Carli Apr 2004 A1
20040073218 Dahners Apr 2004 A1
20040078051 Davison et al. Apr 2004 A1
20040078082 Lange Apr 2004 A1
20040220671 Ralph et al. Apr 2004 A1
20040087949 Bono et al. May 2004 A1
20040087950 Teitelbaum May 2004 A1
20040087952 Borgstrom et al. May 2004 A1
20040092934 Howland May 2004 A1
20040092938 Carli May 2004 A1
20040097933 Lourdel et al. May 2004 A1
20040106925 Culbert Jun 2004 A1
20040111091 Ogilvie et al. Jun 2004 A1
20040122442 Lewis Jun 2004 A1
20040127904 Konieczynski et al. Jul 2004 A1
20040133207 Abdou Jul 2004 A1
20040138660 Serhan Jul 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040147928 Landry et al. Jul 2004 A1
20040147929 Biedermann et al. Jul 2004 A1
20040147937 Dunbar, Jr. et al. Jul 2004 A1
20040153068 Janowski et al. Aug 2004 A1
20040158245 Chin Aug 2004 A1
20040158247 Sitiso et al. Aug 2004 A1
20040158258 Bonati et al. Aug 2004 A1
20040162560 Raynor et al. Aug 2004 A1
20040167523 Jackson Aug 2004 A1
20040167525 Jackson Aug 2004 A1
20040172025 Drewry et al. Sep 2004 A1
20040172031 Rubecamp et al. Sep 2004 A1
20040172032 Jackson Sep 2004 A1
20040176776 Zubok et al. Sep 2004 A1
20040186473 Cournoyer et al. Sep 2004 A1
20040186474 Matthis et al. Sep 2004 A1
20040186475 Falahee Sep 2004 A1
20040210216 Farris et al. Oct 2004 A1
20040210227 Trail et al. Oct 2004 A1
20040215190 Nguyen et al. Oct 2004 A1
20040215191 Kitchen Oct 2004 A1
20040220567 Eisermann et al. Nov 2004 A1
20040225289 Biedermann et al. Nov 2004 A1
20040230100 Shluzas Nov 2004 A1
20040236327 Paul et al. Nov 2004 A1
20040236328 Paul et al. Nov 2004 A1
20040236330 Purcell et al. Nov 2004 A1
20040249378 Saint Martin et al. Dec 2004 A1
20040254574 Morrison et al. Dec 2004 A1
20040260283 Wu et al. Dec 2004 A1
20040267264 Konieczynski et al. Dec 2004 A1
20050010219 Dalton Jan 2005 A1
20050027296 Thramann et al. Feb 2005 A1
20050033298 Hawkes et al. Feb 2005 A1
20050033436 Schlapfer et al. Feb 2005 A1
20050033439 Gordon et al. Feb 2005 A1
20050038430 McKinley Feb 2005 A1
20050038432 Shaolian et al. Feb 2005 A1
20050038433 Young Feb 2005 A1
20050049588 Jackson Mar 2005 A1
20050049589 Jackson Mar 2005 A1
20050055026 Biedermann et al. Mar 2005 A1
20050065514 Studer Mar 2005 A1
20050065515 Jahng Mar 2005 A1
20050065516 Jahng Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070899 Doubler et al. Mar 2005 A1
20050070901 David Mar 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050085812 Sherman et al. Apr 2005 A1
20050085813 Spitler et al. Apr 2005 A1
20050085815 Harms et al. Apr 2005 A1
20050085816 Michelson Apr 2005 A1
20050090821 Berrevoets et al. Apr 2005 A1
20050096652 Burton May 2005 A1
20050096653 Doubler et al. May 2005 A1
20050096654 Lin May 2005 A1
20050107788 Beaurain et al. May 2005 A1
20050113927 Malek May 2005 A1
20050119658 Ralph et al. Jun 2005 A1
20050124991 Jahng Jun 2005 A1
20050131404 Mazda et al. Jun 2005 A1
20050131405 Molz, IV et al. Jun 2005 A1
20050131406 Reiley et al. Jun 2005 A1
20050131407 Sicvol et al. Jun 2005 A1
20050131408 Sicvol et al. Jun 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050131419 McCord et al. Jun 2005 A1
20050131422 Anderson Jun 2005 A1
20050137594 Doubler et al. Jun 2005 A1
20050137597 Butler et al. Jun 2005 A1
20050141986 Flesher Jun 2005 A1
20050143737 Pafford et al. Jun 2005 A1
20050143823 Boyd et al. Jun 2005 A1
20050144389 Selover et al. Jul 2005 A1
20050149020 Jahng Jul 2005 A1
20050149053 Varieur Jul 2005 A1
20050154390 Biedermann et al. Jul 2005 A1
20050154391 Doherty et al. Jul 2005 A1
20050159750 Doherty Jul 2005 A1
20050165400 Fernandez Jul 2005 A1
20050171540 Lim et al. Aug 2005 A1
20050171543 Timm et al. Aug 2005 A1
20050177154 Moumene et al. Aug 2005 A1
20050177166 Timm et al. Aug 2005 A1
20050182401 Timm et al. Aug 2005 A1
20050182410 Jackson Aug 2005 A1
20050187548 Butler et al. Aug 2005 A1
20050187555 Biedermann et al. Aug 2005 A1
20050192571 Abdelgany Sep 2005 A1
20050192572 Abdelgany et al. Sep 2005 A1
20050192573 Abdelgany et al. Sep 2005 A1
20050192579 Jackson Sep 2005 A1
20050192580 Dalton Sep 2005 A1
20050192589 Raymond et al. Sep 2005 A1
20050203511 Wilson-MacDonald et al. Sep 2005 A1
20050203513 Jahng et al. Sep 2005 A1
20050203514 Jahng et al. Sep 2005 A1
20050203516 Harms et al. Sep 2005 A1
20050203518 Biederman et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050215999 Birkmeyer et al. Sep 2005 A1
20050216000 Colleran et al. Sep 2005 A1
20050216001 David Sep 2005 A1
20050216003 Biedermann et al. Sep 2005 A1
20050228326 Kalfas et al. Oct 2005 A1
20050228379 Jackson Oct 2005 A1
20050228385 Lee et al. Oct 2005 A1
20050228400 Chao Oct 2005 A1
20050228501 Miller et al. Oct 2005 A1
20050234450 Barker Oct 2005 A1
20050234451 Markworth Oct 2005 A1
20050234452 Malandain Oct 2005 A1
20050234453 Shaolian et al. Oct 2005 A1
20050234454 Chin Oct 2005 A1
20050234456 Malandain Oct 2005 A1
20050234459 Falahee et al. Oct 2005 A1
20050240181 Boomer et al. Oct 2005 A1
20050240183 Vaughan Oct 2005 A1
20050245930 Timm et al. Nov 2005 A1
20050251137 Ball Nov 2005 A1
20050251139 Roh Nov 2005 A1
20050251140 Shaolian et al. Nov 2005 A1
20050251141 Frigg et al. Nov 2005 A1
20050260058 Casagne, III Nov 2005 A1
20050261687 Garamszegi et al. Nov 2005 A1
20050267470 McBride Dec 2005 A1
20050267471 Biedermann et al. Dec 2005 A1
20050267472 Biedermann et al. Dec 2005 A1
20050267474 Dalton Dec 2005 A1
20050267477 Jackson Dec 2005 A1
20050273099 Baccelli et al. Dec 2005 A1
20050273101 Schumacher Dec 2005 A1
20050277919 Slivka et al. Dec 2005 A1
20050277922 Trieu et al. Dec 2005 A1
20050277923 Sweeney Dec 2005 A1
20050277925 Mujwid Dec 2005 A1
20050277927 Guenther et al. Dec 2005 A1
20050277928 Boschert Dec 2005 A1
20050277931 Sweeney et al. Dec 2005 A1
20050277934 Vardiman Dec 2005 A1
20050278023 Zwirkoski Dec 2005 A1
20050283152 Lindemann et al. Dec 2005 A1
20050283157 Coates et al. Dec 2005 A1
20050283238 Reiley Dec 2005 A1
20050283244 Gordon et al. Dec 2005 A1
20050288669 Abdou Dec 2005 A1
20050288670 Panjabi Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20050288673 Catbagan et al. Dec 2005 A1
20060004359 Kramer et al. Jan 2006 A1
20060004363 Brockmeyer et al. Jan 2006 A1
20060009767 Kiester Jan 2006 A1
20060009769 Lieberman Jan 2006 A1
20060009770 Speirs et al. Jan 2006 A1
20060009780 Foley et al. Jan 2006 A1
20060015099 Cannon et al. Jan 2006 A1
20060025767 Khalili Feb 2006 A1
20060025768 Iott et al. Feb 2006 A1
20060025770 Schlapfer et al. Feb 2006 A1
20060025771 Jackson Feb 2006 A1
20060030850 Keegan et al. Feb 2006 A1
20060036240 Colleran et al. Feb 2006 A1
20060036242 Nilsson et al. Feb 2006 A1
20060036243 Sasso et al. Feb 2006 A1
20060036244 Spitler et al. Feb 2006 A1
20060036246 Carl et al. Feb 2006 A1
20060036252 Baynham et al. Feb 2006 A1
20060036254 Lim Feb 2006 A1
20060036256 Carl et al. Feb 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060052780 Errico et al. Mar 2006 A1
20060052783 Dant et al. Mar 2006 A1
20060052784 Dant et al. Mar 2006 A1
20060052786 Dant et al. Mar 2006 A1
20060058788 Hammer et al. Mar 2006 A1
20060058790 Carl et al. Mar 2006 A1
20060064090 Park Mar 2006 A1
20060064091 Ludwig et al. Mar 2006 A1
20060064092 Howland Mar 2006 A1
20060069390 Frigg et al. Mar 2006 A1
20060074418 Jackson Apr 2006 A1
20060074419 Taylor et al. Apr 2006 A1
20060079894 Colleran et al. Apr 2006 A1
20060079895 McLeer Apr 2006 A1
20060079896 Kwak et al. Apr 2006 A1
20060079898 Ainsworth Apr 2006 A1
20060079899 Ritland Apr 2006 A1
20060084977 Liberman Apr 2006 A1
20060084980 Melkent et al. Apr 2006 A1
20060084981 Shluzas Apr 2006 A1
20060084982 Dickinson et al. Apr 2006 A1
20060084983 Kim Apr 2006 A1
20060084984 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060084991 Borgstrom et al. Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060089643 Mujwid Apr 2006 A1
20060089644 Felix Apr 2006 A1
20060089645 Eckman Apr 2006 A1
20060095035 Jones et al. May 2006 A1
20060095037 Jones et al. May 2006 A1
20060095038 Jackson May 2006 A1
20060100621 Jackson May 2006 A1
20060100622 Jackson May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106394 Colleran May 2006 A1
20060111713 Jackson May 2006 A1
20060111715 Jackson May 2006 A1
20060116677 Burd et al. Jun 2006 A1
20060122597 Jones et al. Jun 2006 A1
20060122599 Drewry et al. Jun 2006 A1
20060129147 Biedermann et al. Jun 2006 A1
20060129149 Iott et al. Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060131421 Dunn et al. Jun 2006 A1
20060142758 Petit Jun 2006 A1
20060142760 McDonnell Jun 2006 A1
20060149228 Schlapfer et al. Jul 2006 A1
20060149229 Kwak et al. Jul 2006 A1
20060149238 Sherman et al. Jul 2006 A1
20060149240 Jackson Jul 2006 A1
20060149241 Richelsoph et al. Jul 2006 A1
20060149251 Ziolo et al. Jul 2006 A1
20060155277 Metz-Stavenhagen Jul 2006 A1
20060161152 Ensign et al. Jul 2006 A1
20060166535 Brumfield et al. Jul 2006 A1
20060167454 Ludwig et al. Jul 2006 A1
20060167455 Clement et al. Jul 2006 A1
20060173456 Hawkes et al. Aug 2006 A1
20060184171 Biedermann Aug 2006 A1
20060184180 Augostino Aug 2006 A1
20060189983 Fallin et al. Aug 2006 A1
20060189985 Lewis Aug 2006 A1
20060195090 Suddaby Aug 2006 A1
20060195093 Jahng Aug 2006 A1
20060195198 James Aug 2006 A1
20060200023 Melkent et al. Sep 2006 A1
20060200130 Hawkins et al. Sep 2006 A1
20060200131 Chao et al. Sep 2006 A1
20060200132 Chao et al. Sep 2006 A1
20060200133 Jackson Sep 2006 A1
20060200149 Hoy et al. Sep 2006 A1
20060212033 Rothman et al. Sep 2006 A1
20060212034 Triplett et al. Sep 2006 A1
20060217713 Serhan et al. Sep 2006 A1
20060217716 Baker et al. Sep 2006 A1
20060217719 Albert et al. Sep 2006 A1
20060229608 Foster et al. Oct 2006 A1
20060229609 Wang Oct 2006 A1
20060229613 Timm Oct 2006 A1
20060229614 Foley et al. Oct 2006 A1
20060229615 Abdou Oct 2006 A1
20060241593 Sherman et al. Oct 2006 A1
20060241595 Molz, IV et al. Oct 2006 A1
20060241600 Ensign et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241603 Jackson Oct 2006 A1
20060247624 Banouskou et al. Nov 2006 A1
20060247630 Iott et al. Nov 2006 A1
20060247631 Ahn et al. Nov 2006 A1
20060247632 Winslow et al. Nov 2006 A1
20060247633 Winslow et al. Nov 2006 A1
20060247658 Pond, Jr. et al. Nov 2006 A1
20060260483 Hartmann et al. Nov 2006 A1
20060264933 Baker et al. Nov 2006 A1
20060264934 Fallin Nov 2006 A1
20060264935 White Nov 2006 A1
20060264936 Partin et al. Nov 2006 A1
20060264962 Chin et al. Nov 2006 A1
20060276787 Zubok et al. Dec 2006 A1
20060276789 Jackson Dec 2006 A1
20060276791 Shluzas Dec 2006 A1
20060276792 Ensign et al. Dec 2006 A1
20060282075 Labrom et al. Dec 2006 A1
20060282076 Labrom et al. Dec 2006 A1
20060282077 Labrom et al. Dec 2006 A1
20060282078 Labrom et al. Dec 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060282080 Albert Dec 2006 A1
20060293657 Hartmann Dec 2006 A1
20060293659 Alvarez Dec 2006 A1
20060293663 Walkenhorst Dec 2006 A1
20060293666 Matthis et al. Dec 2006 A1
20060293693 Farr et al. Dec 2006 A1
20070005062 Lange et al. Jan 2007 A1
20070005063 Bruneau et al. Jan 2007 A1
20070005137 Kwak Jan 2007 A1
20070016190 Martinez et al. Jan 2007 A1
20070016194 Shaolian et al. Jan 2007 A1
20070016200 Jackson Jan 2007 A1
20070021750 Shluzas et al. Jan 2007 A1
20070032123 Timm et al. Feb 2007 A1
20070043356 Timm et al. Feb 2007 A1
20070043357 Kirschman Feb 2007 A1
20070043358 Molz, IV et al. Feb 2007 A1
20070043359 Altarac et al. Feb 2007 A1
20070043364 Cawley et al. Feb 2007 A1
20070049931 Justis et al. Mar 2007 A1
20070049933 Ahn et al. Mar 2007 A1
20070049936 Colleran et al. Mar 2007 A1
20070055236 Hudgins et al. Mar 2007 A1
20070055239 Sweeney et al. Mar 2007 A1
20070055240 Matthis et al. Mar 2007 A1
20070055241 Matthis et al. Mar 2007 A1
20070055242 Bailly Mar 2007 A1
20070055244 Jackson Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070073290 Boehm, Jr. Mar 2007 A1
20070073291 Cordaro et al. Mar 2007 A1
20070073293 Math et al. Mar 2007 A1
20070073294 Chin et al. Mar 2007 A1
20070078460 Frigg et al. Apr 2007 A1
20070078461 Shluzas Apr 2007 A1
20070083199 Baccelli Apr 2007 A1
20070088357 Johnson et al. Apr 2007 A1
20070088359 Woods et al. Apr 2007 A1
20070090238 Justis Apr 2007 A1
20070093813 Callahan et al. Apr 2007 A1
20070093814 Callahan, II et al. Apr 2007 A1
20070093815 Callahan, II et al. Apr 2007 A1
20070093818 Biedermann et al. Apr 2007 A1
20070093819 Albert Apr 2007 A1
20070093824 Hestad et al. Apr 2007 A1
20070093826 Hawkes et al. Apr 2007 A1
20070093833 Kuiper et al. Apr 2007 A1
20070100341 Reglos et al. May 2007 A1
20070118117 Altarac et al. May 2007 A1
20070118118 Kwak et al. May 2007 A1
20070118119 Hestad May 2007 A1
20070118122 Butler et al. May 2007 A1
20070118123 Strausbaugh et al. May 2007 A1
20070118124 Biedermann et al. May 2007 A1
20070123867 Kirschman May 2007 A1
20070123870 Jeon et al. May 2007 A1
20070156142 Rezach et al. Jul 2007 A1
20070161986 Levy Jul 2007 A1
20070161991 Altarac et al. Jul 2007 A1
20070161994 Lowrey et al. Jul 2007 A1
20070161995 Trautwein et al. Jul 2007 A1
20070161996 Biedermann et al. Jul 2007 A1
20070161997 Thramann et al. Jul 2007 A1
20070161999 Biedermann et al. Jul 2007 A1
20070167948 Abdou Jul 2007 A1
20070167949 Altarac et al. Jul 2007 A1
20070173818 Hestad et al. Jul 2007 A1
20070173819 Sandlin Jul 2007 A1
20070173820 Trieu Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173828 Firkins et al. Jul 2007 A1
20070173832 Tebbe et al. Jul 2007 A1
20070191832 Trieu Aug 2007 A1
20070191839 Justis et al. Aug 2007 A1
20070191841 Justis et al. Aug 2007 A1
20070191846 Bruneau et al. Aug 2007 A1
20070198014 Graf et al. Aug 2007 A1
20070208344 Young Sep 2007 A1
20070213720 Gordon et al. Sep 2007 A1
20070225707 Wisnewski et al. Sep 2007 A1
20070225708 Biedermann et al. Sep 2007 A1
20070225711 Ensign Sep 2007 A1
20070233073 Wisnewski et al. Oct 2007 A1
20070233078 Justis et al. Oct 2007 A1
20070233080 Na et al. Oct 2007 A1
20070233085 Biedermann et al. Oct 2007 A1
20070233086 Harms et al. Oct 2007 A1
20070233089 Dipoto et al. Oct 2007 A1
20070233092 Falahee Oct 2007 A1
20070233094 Colleran et al. Oct 2007 A1
20070233095 Schlapfer Oct 2007 A1
20070233155 Lovell Oct 2007 A1
20070244481 Timm Oct 2007 A1
20070244482 Aferzon Oct 2007 A1
20070250061 Chin et al. Oct 2007 A1
20070260243 Kagami Nov 2007 A1
20070270813 Garamszegi Nov 2007 A1
20070270821 Trieu et al. Nov 2007 A1
20070270836 Bruneau et al. Nov 2007 A1
20070270837 Eckhardt et al. Nov 2007 A1
20070270838 Bruneau et al. Nov 2007 A1
20070270843 Matthis et al. Nov 2007 A1
20070270869 Young et al. Nov 2007 A1
20070276371 Baynham et al. Nov 2007 A1
20070276379 Miller et al. Nov 2007 A1
20070276380 Jahng et al. Nov 2007 A1
20070288004 Alvarez Dec 2007 A1
20070288012 Colleran et al. Dec 2007 A1
20070293862 Jackson Dec 2007 A1
20080009862 Hoffman Jan 2008 A1
20080009864 Forton et al. Jan 2008 A1
20080015578 Erickson et al. Jan 2008 A1
20080015579 Whipple Jan 2008 A1
20080015580 Chao Jan 2008 A1
20080015597 Whipple Jan 2008 A1
20080021454 Chao et al. Jan 2008 A1
20080021455 Chao et al. Jan 2008 A1
20080021462 Trieu Jan 2008 A1
20080021464 Morin et al. Jan 2008 A1
20080021465 Shadduck et al. Jan 2008 A1
20080027432 Strauss et al. Jan 2008 A1
20080039843 Abdou Feb 2008 A1
20080045951 Fanger et al. Feb 2008 A1
20080045955 Berrevoets et al. Feb 2008 A1
20080051780 Vaidya et al. Feb 2008 A1
20080051787 Remington et al. Feb 2008 A1
20080058811 Alleyne et al. Mar 2008 A1
20080058812 Zehnder Mar 2008 A1
20080065071 Park Mar 2008 A1
20080065073 Perriello et al. Mar 2008 A1
20080065075 Dant Mar 2008 A1
20080065077 Ferree Mar 2008 A1
20080065079 Bruneau et al. Mar 2008 A1
20080071273 Hawkes et al. Mar 2008 A1
20080071274 Ensign Mar 2008 A1
20080077136 Triplett et al. Mar 2008 A1
20080077138 Cohen et al. Mar 2008 A1
20080077139 Landry et al. Mar 2008 A1
20080077143 Shluzas Mar 2008 A1
20080086131 Daly et al. Apr 2008 A1
20080086132 Biedermann et al. Apr 2008 A1
20080091213 Jackson Apr 2008 A1
20080097441 Hayes et al. Apr 2008 A1
20080103502 Capote et al. May 2008 A1
20080108992 Barry et al. May 2008 A1
20080114362 Justis et al. May 2008 A1
20080114403 Kuester et al. May 2008 A1
20080119849 Beardsley et al. May 2008 A1
20080119857 Potash et al. May 2008 A1
20080125777 Veldman et al. May 2008 A1
20080125787 Doubler et al. May 2008 A1
20080125813 Erickson et al. May 2008 A1
20080132957 Matthis et al. Jun 2008 A1
20080140075 Ensign et al. Jun 2008 A1
20080140076 Jackson Jun 2008 A1
20080140133 Allard et al. Jun 2008 A1
20080140136 Jackson Jun 2008 A1
20080147121 Justis et al. Jun 2008 A1
20080147122 Jackson Jun 2008 A1
20080147129 Biedermann et al. Jun 2008 A1
20080147195 Kwak et al. Jun 2008 A1
20080154279 Schumaker et al. Jun 2008 A1
20080154308 Sherman et al. Jun 2008 A1
20080154315 Jackson Jun 2008 A1
20080161857 Hestad et al. Jul 2008 A1
20080161863 Arnold et al. Jul 2008 A1
20080167687 Colleran et al. Jul 2008 A1
20080172090 Molz Jul 2008 A1
20080172091 Anderson Jul 2008 A1
20080172096 Hawkins Jul 2008 A1
20080177316 Bergeron et al. Jul 2008 A1
20080177317 Jackson Jul 2008 A1
20080177321 Drewry et al. Jul 2008 A1
20080177322 Davis et al. Jul 2008 A1
20080177323 Null et al. Jul 2008 A1
20080177388 Patterson et al. Jul 2008 A1
20080183212 Veldman et al. Jul 2008 A1
20080183213 Veldman et al. Jul 2008 A1
20080183215 Altarac et al. Jul 2008 A1
20080183216 Jackson Jul 2008 A1
20080183219 Jackson Jul 2008 A1
20080183223 Jeon et al. Jul 2008 A1
20080188898 Jackson Aug 2008 A1
20080195153 Thompson Aug 2008 A1
20080195155 Hoffman et al. Aug 2008 A1
20080195159 Kloss et al. Aug 2008 A1
20080200918 Spitler et al. Aug 2008 A1
20080200956 Beckwith et al. Aug 2008 A1
20080215095 Biedermann et al. Sep 2008 A1
20080215100 Matthis et al. Sep 2008 A1
20080228184 Hestad Sep 2008 A1
20080228228 Hestad et al. Sep 2008 A1
20080234736 Trieu et al. Sep 2008 A1
20080234737 Boschert Sep 2008 A1
20080234738 Zylber et al. Sep 2008 A1
20080234739 Hudgins et al. Sep 2008 A1
20080234744 Zylber et al. Sep 2008 A1
20080234756 Sutcliffe et al. Sep 2008 A1
20080234759 Marino Sep 2008 A1
20080234761 Jackson Sep 2008 A1
20080243052 Pond et al. Oct 2008 A1
20080243185 Felix et al. Oct 2008 A1
20080243193 Ensign et al. Oct 2008 A1
20080249570 Carson et al. Oct 2008 A1
20080262548 Lange et al. Oct 2008 A1
20080262551 Rice et al. Oct 2008 A1
20080262554 Hayes et al. Oct 2008 A1
20080262556 Jacofsky et al. Oct 2008 A1
20080269742 Levy et al. Oct 2008 A1
20080269804 Holt Oct 2008 A1
20080269805 Dekutoski et al. Oct 2008 A1
20080275456 Vonwiller et al. Nov 2008 A1
20080275504 Bonin et al. Nov 2008 A1
20080287994 Perez-Cruet et al. Nov 2008 A1
20080288002 Crall et al. Nov 2008 A1
20080294203 Kovach et al. Nov 2008 A1
20080300630 Bonnema et al. Dec 2008 A1
20080300631 Tornier Dec 2008 A1
20080300633 Jackson Dec 2008 A1
20080306513 Winslow et al. Dec 2008 A1
20080306525 Winslow et al. Dec 2008 A1
20080306526 Winslow et al. Dec 2008 A1
20080306533 Winslow et al. Dec 2008 A1
20080306536 Frigg et al. Dec 2008 A1
20080306540 Mitchell et al. Dec 2008 A1
20080306543 Cain et al. Dec 2008 A1
20080312655 Kirschman et al. Dec 2008 A1
20080312692 Brennan et al. Dec 2008 A1
20080312696 Butters et al. Dec 2008 A1
20080312701 Butters et al. Dec 2008 A1
20080312703 Hestad et al. Dec 2008 A1
20080312704 Hestad et al. Dec 2008 A1
20080319482 Jackson Dec 2008 A1
20080319490 Jackson Dec 2008 A1
20090005787 Crall et al. Jan 2009 A1
20090005813 Crall et al. Jan 2009 A1
20090005814 Miller et al. Jan 2009 A1
20090012567 Biedermann et al. Jan 2009 A1
20090018557 Pisharodi Jan 2009 A1
20090018583 Song et al. Jan 2009 A1
20090024165 Ferree Jan 2009 A1
20090024169 Triplett et al. Jan 2009 A1
20090030457 Janowski et al. Jan 2009 A1
20090036929 Reglos et al. Feb 2009 A1
20090036932 Rouyer et al. Feb 2009 A1
20090036934 Biedermann et al. Feb 2009 A1
20090048601 Forton et al. Feb 2009 A1
20090048631 Bhatnagar et al. Feb 2009 A1
20090062860 Fraiser et al. Mar 2009 A1
20090062865 Schumacher Mar 2009 A1
20090062866 Jackson Mar 2009 A1
20090062867 Schumacher Mar 2009 A1
20090062914 Marino Mar 2009 A1
20090069849 Oh et al. Mar 2009 A1
20090069852 Farris et al. Mar 2009 A1
20090069853 Schumacher Mar 2009 A1
20090076550 Bernhardt, Jr. et al. Mar 2009 A1
20090076552 Tornier Mar 2009 A1
20090082666 Geist et al. Mar 2009 A1
20090082812 Lewis Mar 2009 A1
20090082815 Zylber et al. Mar 2009 A1
20090082819 Blain et al. Mar 2009 A1
20090088769 Poletti Apr 2009 A1
20090088799 Yeh Apr 2009 A1
20090088803 Justis et al. Apr 2009 A1
20090088807 Castaneda et al. Apr 2009 A1
20090093820 Trieu et al. Apr 2009 A1
20090093843 Lemoine et al. Apr 2009 A1
20090093846 Hestad et al. Apr 2009 A1
20090099606 Hestad et al. Apr 2009 A1
20090099608 Szczesny Apr 2009 A1
20090105769 Rock et al. Apr 2009 A1
20090105770 Berrevoets et al. Apr 2009 A1
20090105771 Lei et al. Apr 2009 A1
20090105820 Jackson Apr 2009 A1
20090112265 Hudgins et al. Apr 2009 A1
20090112266 Weng et al. Apr 2009 A1
20090112269 Lieberman et al. Apr 2009 A1
20090118772 Diederich et al. May 2009 A1
20090131983 Biedermann et al. May 2009 A1
20090138044 Bergeron et al. May 2009 A1
20090138052 Biedermann et al. May 2009 A1
20090143827 Levy et al. Jun 2009 A1
20090143828 Stad et al. Jun 2009 A1
20090149885 Durward et al. Jun 2009 A1
20090149892 Stad et al. Jun 2009 A1
20090157120 Marino et al. Jun 2009 A1
20090163901 Fisher et al. Jun 2009 A1
20090163953 Biedermann et al. Jun 2009 A1
20090163954 Kwak Jun 2009 A1
20090163955 Moumene et al. Jun 2009 A1
20090163956 Biedermann et al. Jun 2009 A1
20090163961 Kirschman Jun 2009 A1
20090163963 Berrevoets Jun 2009 A1
20090171392 Garcia-Bengochea et al. Jul 2009 A1
20090171395 Jeon et al. Jul 2009 A1
20090177232 Kiester Jul 2009 A1
20090177237 Zucherman et al. Jul 2009 A1
20090182380 Abdelgany Jul 2009 A1
20090182430 Tyber et al. Jul 2009 A1
20090192548 Jeon et al. Jul 2009 A1
20090192551 Cianfrani et al. Jul 2009 A1
20090198280 Spratt et al. Aug 2009 A1
20090198281 Rice et al. Aug 2009 A1
20090198289 Manderson Aug 2009 A1
20090198291 Kevin et al. Aug 2009 A1
20090216278 Song Aug 2009 A1
20090216280 Hutchinson Aug 2009 A1
20090221877 Woods Sep 2009 A1
20090228045 Hayes et al. Sep 2009 A1
20090240292 Butler et al. Sep 2009 A1
20090248030 Butler et al. Oct 2009 A1
20090248075 Ogilvie et al. Oct 2009 A1
20090248077 Johns Oct 2009 A1
20090248083 Patterson et al. Oct 2009 A1
20090248088 Biedermann Oct 2009 A1
20090254125 Predick Oct 2009 A1
20090259254 Pisharodi Oct 2009 A1
20090259257 Prevost Oct 2009 A1
20090259258 Perez-Cruet et al. Oct 2009 A1
20090264895 Gasperut et al. Oct 2009 A1
20090264896 Biedermann et al. Oct 2009 A1
20090264930 McBride Oct 2009 A1
20090264933 Carls et al. Oct 2009 A1
20090270916 Ramsay et al. Oct 2009 A1
20090270917 Boehm Oct 2009 A1
20090270920 Douget et al. Oct 2009 A1
20090270921 Krause Oct 2009 A1
20090270922 Biedermann et al. Oct 2009 A1
20090275981 Abdelgany et al. Nov 2009 A1
20090275983 Veldman et al. Nov 2009 A1
20090275985 Jackson Nov 2009 A1
20090275986 Prevost et al. Nov 2009 A1
20090281542 Justis Nov 2009 A1
20090281571 Weaver et al. Nov 2009 A1
20090281572 White Nov 2009 A1
20090281573 Biedermann et al. Nov 2009 A1
20090281574 Jackson Nov 2009 A1
20090287252 Marik et al. Nov 2009 A1
20090287253 Felix et al. Nov 2009 A1
20090299411 Laskowitz et al. Dec 2009 A1
20090299415 Pimenta Dec 2009 A1
20090306719 Meyer, III et al. Dec 2009 A1
20090306720 Doubler et al. Dec 2009 A1
20090312804 Gamache et al. Dec 2009 A1
20090326582 Songer et al. Dec 2009 A1
20090326583 Moumene et al. Dec 2009 A1
20090326586 Duarte Dec 2009 A1
20100004692 Biedermann et al. Jan 2010 A1
20100004694 Little Jan 2010 A1
20100004695 Stad et al. Jan 2010 A1
20100010540 Park Jan 2010 A1
20100010542 Jackson Jan 2010 A1
20100010543 Jackson Jan 2010 A1
20100023061 Randol et al. Jan 2010 A1
20100030224 Winslow et al. Feb 2010 A1
20100030272 Winslow et al. Feb 2010 A1
20100030283 King et al. Feb 2010 A1
20100036417 James et al. Feb 2010 A1
20100036422 Flynn et al. Feb 2010 A1
20100036423 Hayes et al. Feb 2010 A1
20100036425 Barrus et al. Feb 2010 A1
20100036432 Ely Feb 2010 A1
20100036443 Hutton et al. Feb 2010 A1
20100042149 Chao et al. Feb 2010 A1
20100042152 Semler et al. Feb 2010 A1
20100042155 Biedermann et al. Feb 2010 A1
20100042156 Harms et al. Feb 2010 A1
20100057125 Viker Mar 2010 A1
20100057126 Hestad Mar 2010 A1
20100057131 Ely Mar 2010 A1
20100063544 Butler Mar 2010 A1
20100063545 Richelsoph Mar 2010 A1
20100063546 Miller et al. Mar 2010 A1
20100063547 Morin et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100063552 Chin et al. Mar 2010 A1
20100069919 Carls et al. Mar 2010 A1
20100069969 Ampuero et al. Mar 2010 A1
20100082066 Biyani Apr 2010 A1
20100087858 Abdou Apr 2010 A1
20100087862 Biedermann et al. Apr 2010 A1
20100087863 Biedermann et al. Apr 2010 A1
20100087864 Klein et al. Apr 2010 A1
20100087865 Biedermann et al. Apr 2010 A1
20100094343 Pham et al. Apr 2010 A1
20100094348 Biedermann et al. Apr 2010 A1
20100094349 Hammer et al. Apr 2010 A1
20100094352 Iott et al. Apr 2010 A1
20100094353 Shim et al. Apr 2010 A1
20100100136 Won et al. Apr 2010 A1
20100100137 Justis et al. Apr 2010 A1
20100106189 Miller Apr 2010 A1
20100106192 Barry Apr 2010 A1
20100114165 Ely May 2010 A1
20100114170 Barrus et al. May 2010 A1
20100114171 Boachie-Adjei et al. May 2010 A1
20100114179 Moore et al. May 2010 A1
20100114180 Rock et al. May 2010 A1
20100114182 Wilcox et al. May 2010 A1
20100121386 Peultier et al. May 2010 A1
20100125302 Hammill, Sr. et al. May 2010 A1
20100137908 Zhang Jun 2010 A1
20100137912 Alcock et al. Jun 2010 A1
20100137918 Wilcox et al. Jun 2010 A1
20100137920 Hammill, Sr. et al. Jun 2010 A1
20100152776 Keyer et al. Jun 2010 A1
20100152785 Forton et al. Jun 2010 A1
20100160965 Viker Jun 2010 A1
20100160967 Capozzoli Jun 2010 A1
20100160968 Joshi et al. Jun 2010 A1
20100160974 Viker Jun 2010 A1
20100160976 Biedermann et al. Jun 2010 A1
20100168796 Eliasen et al. Jul 2010 A1
20100168800 Biedermann et al. Jul 2010 A1
20100168801 Biedermann et al. Jul 2010 A1
20100168803 Hestad et al. Jul 2010 A1
20100174322 Abdelgany et al. Jul 2010 A1
20100179602 Dauster et al. Jul 2010 A1
20100191293 Jackson Jul 2010 A1
20100204735 Gephart et al. Aug 2010 A1
20100211104 Moumene et al. Aug 2010 A1
20100211105 Moumene et al. Aug 2010 A1
20100211114 Jackson Aug 2010 A1
20100222822 Farris et al. Sep 2010 A1
20100222828 Stad et al. Sep 2010 A1
20100234902 Biedermann et al. Sep 2010 A1
20100249843 Wegzyn, III Sep 2010 A1
20100249846 Simonson Sep 2010 A1
20100249856 Iott et al. Sep 2010 A1
20100262185 Gelfand et al. Oct 2010 A1
20100262187 Marik et al. Oct 2010 A1
20100262190 Ballard et al. Oct 2010 A1
20100262191 Marik et al. Oct 2010 A1
20100262192 Foley Oct 2010 A1
20100274285 Rouleau Oct 2010 A1
20100274287 Rouleau et al. Oct 2010 A1
20100274288 Prevost et al. Oct 2010 A1
20100298891 Jackson Nov 2010 A1
20100305621 Wang et al. Dec 2010 A1
20100312288 Hammill, Sr. et al. Dec 2010 A1
20100331885 Remington et al. Dec 2010 A1
20110004256 Biedermann et al. Jan 2011 A1
20110009906 Hestad et al. Jan 2011 A1
20110009911 Hammill et al. Jan 2011 A1
20110029022 Zehnder et al. Feb 2011 A1
20110040338 Jackson Feb 2011 A1
20110046683 Biedermann et al. Feb 2011 A1
20110093015 Ramsay et al. Apr 2011 A1
20110093021 Fanger et al. Apr 2011 A1
20110106174 Rezach May 2011 A1
20110106175 Rezach May 2011 A1
20110130792 Nydegger et al. Jun 2011 A1
20110152939 Aldridge Jun 2011 A1
20110152949 Biedermann et al. Jun 2011 A1
20110160778 Elsbury Jun 2011 A1
20110166610 Altarac et al. Jul 2011 A1
20110178558 Barry Jul 2011 A1
20110178560 Butler et al. Jul 2011 A1
20110184469 Ballard et al. Jul 2011 A1
20110184471 Foley et al. Jul 2011 A1
20110190822 Spitler et al. Aug 2011 A1
20110196430 Walsh Aug 2011 A1
20110202094 Pereira et al. Aug 2011 A1
20110202095 Semler et al. Aug 2011 A1
20110230915 Anderson et al. Sep 2011 A1
20110238119 Moumene et al. Sep 2011 A1
20110251644 Hestad et al. Oct 2011 A1
20110257685 Hay et al. Oct 2011 A1
20110257687 Trieu et al. Oct 2011 A1
20110257689 Fiechter et al. Oct 2011 A1
20110257690 Rezach Oct 2011 A1
20110263945 Peterson et al. Oct 2011 A1
20110313460 Mclean et al. Dec 2011 A1
20110313463 McLean Dec 2011 A1
20110313471 McLean et al. Dec 2011 A1
20120029568 Jackson Feb 2012 A1
20120046699 Jones et al. Feb 2012 A1
20120053636 Schmocker Mar 2012 A1
20120078307 Nihalani Mar 2012 A1
20120197314 Farris Aug 2012 A1
20120232598 Hestad et al. Sep 2012 A1
20120310284 Gerchow Dec 2012 A1
20130103097 May et al. Apr 2013 A1
Foreign Referenced Citations (236)
Number Date Country
2012203959 Aug 2012 AU
373809 Apr 1923 DE
3630863 Mar 1988 DE
9202745.8 Apr 1992 DE
4425392 Nov 1995 DE
29806563 Jun 1998 DE
29810798 Dec 1999 DE
19951145 May 2001 DE
102007055745 Jul 2008 DE
0195455 Sep 1986 EP
0172130 Feb 1987 EP
0276153 Jul 1988 EP
0667127 Aug 1995 EP
0669109 Aug 1995 EP
0677277 Oct 1995 EP
1277444 Jan 2003 EP
2082709 Jul 2009 EP
2468198 Dec 2010 EP
2384773 Jul 2012 ES
2467312 Apr 1981 FR
2715825 Aug 1995 FR
2717370 Sep 1995 FR
2718946 Oct 1995 FR
2799949 Apr 2001 FR
2814936 Apr 2002 FR
2815535 Apr 2002 FR
2856578 Jun 2003 FR
2865377 Jan 2004 FR
2846223 Apr 2004 FR
2857850 Apr 2004 FR
2925288 Jun 2009 FR
203508 Sep 1923 GB
2082709 Mar 1982 GB
2140523 Nov 1984 GB
2365345 Feb 2002 GB
2382304 May 2003 GB
S4867159 Sep 1973 JP
S50106061 Aug 1975 JP
H10277070 Oct 1998 JP
2000325358 Mar 2000 JP
2002052030 Feb 2002 JP
2002221218 Aug 2002 JP
371359 Feb 1973 SU
8909030 Oct 1989 WO
8912431 Dec 1989 WO
9116018 Oct 1991 WO
9116020 Oct 1991 WO
9203100 Mar 1992 WO
9321848 Nov 1993 WO
9325161 Dec 1993 WO
9410927 May 1994 WO
9410944 May 1994 WO
9426191 Nov 1994 WO
9428824 Dec 1994 WO
9501132 Jan 1995 WO
9513755 May 1995 WO
9528889 Nov 1995 WO
9531947 Nov 1995 WO
9535067 Dec 1995 WO
9606576 Mar 1996 WO
9621396 Jul 1996 WO
9625104 Aug 1996 WO
9628105 Sep 1996 WO
9628118 Sep 1996 WO
9641582 Dec 1996 WO
9714366 Apr 1997 WO
9714368 Apr 1997 WO
9727812 Aug 1997 WO
9730649 Aug 1997 WO
9737604 Oct 1997 WO
9737605 Oct 1997 WO
9812977 Apr 1998 WO
9815233 Apr 1998 WO
9825534 Jun 1998 WO
9832386 Jul 1998 WO
9834554 Aug 1998 WO
9834556 Aug 1998 WO
9838924 Sep 1998 WO
9903415 Jan 1999 WO
9905980 Feb 1999 WO
9932084 Jul 1999 WO
9938463 Aug 1999 WO
9947083 Sep 1999 WO
9949802 Oct 1999 WO
2000015125 Mar 2000 WO
2000022997 Apr 2000 WO
2000027297 May 2000 WO
2000072769 Jul 2000 WO
2000065268 Nov 2000 WO
2000066045 Nov 2000 WO
2001006940 Feb 2001 WO
2001008574 Feb 2001 WO
2001010317 Feb 2001 WO
2001015612 Mar 2001 WO
2001022893 Apr 2001 WO
2001028435 Apr 2001 WO
2001028436 Apr 2001 WO
2001045576 Jun 2001 WO
2001049191 Jul 2001 WO
20010058370 Aug 2001 WO
2001067972 Sep 2001 WO
2001067974 Sep 2001 WO
2002022030 Mar 2002 WO
2002034150 May 2002 WO
2002054966 Jul 2002 WO
2002102259 Dec 2002 WO
2003007828 Jan 2003 WO
2003026523 Apr 2003 WO
2003037199 May 2003 WO
2003047442 Jun 2003 WO
2003068083 Aug 2003 WO
2003068088 Aug 2003 WO
2003084415 Oct 2003 WO
2003094699 Nov 2003 WO
2004021900 Mar 2004 WO
2004022108 Mar 2004 WO
2004041100 May 2004 WO
2004075778 Sep 2004 WO
2004089245 Oct 2004 WO
2004098452 Nov 2004 WO
2004105577 Dec 2004 WO
2004107997 Dec 2004 WO
2005000136 Jan 2005 WO
2005000137 Jan 2005 WO
2005013839 Feb 2005 WO
2005018466 Mar 2005 WO
2005018471 Mar 2005 WO
2005020829 Mar 2005 WO
2005030068 Apr 2005 WO
2005065374 Jul 2005 WO
2005072632 Aug 2005 WO
2005082262 Sep 2005 WO
2005087121 Sep 2005 WO
2005099400 Oct 2005 WO
2005102195 Nov 2005 WO
2005104969 Nov 2005 WO
2006005198 Jan 2006 WO
2006017616 Feb 2006 WO
2006020530 Feb 2006 WO
2006042188 Apr 2006 WO
2006047711 May 2006 WO
2006054111 May 2006 WO
2006065607 Jun 2006 WO
2006066685 Jun 2006 WO
2006068711 Jun 2006 WO
2006071742 Jul 2006 WO
2006079531 Aug 2006 WO
2006096240 Sep 2006 WO
2006096351 Sep 2006 WO
2006104874 Oct 2006 WO
2006110463 Oct 2006 WO
2006116437 Nov 2006 WO
2006119447 Nov 2006 WO
2007002409 Jan 2007 WO
2007038350 Apr 2007 WO
2007040750 Apr 2007 WO
2007040888 Apr 2007 WO
2007041702 Apr 2007 WO
2007053566 May 2007 WO
2007060534 May 2007 WO
2007075454 Jul 2007 WO
2007081849 Aug 2007 WO
2007087469 Aug 2007 WO
2007087628 Aug 2007 WO
2007090021 Aug 2007 WO
2007092056 Aug 2007 WO
2007092870 Aug 2007 WO
2007097905 Aug 2007 WO
2007109470 Sep 2007 WO
2007114834 Oct 2007 WO
2007118045 Oct 2007 WO
2007121030 Oct 2007 WO
2007121057 Oct 2007 WO
2007121271 Oct 2007 WO
2007123920 Nov 2007 WO
2007124222 Nov 2007 WO
2007124249 Nov 2007 WO
2007127595 Nov 2007 WO
2007127604 Nov 2007 WO
2007130835 Nov 2007 WO
2007130840 Nov 2007 WO
2007130941 Nov 2007 WO
2007138270 Dec 2007 WO
2007146032 Dec 2007 WO
2008005740 Jan 2008 WO
2008006098 Jan 2008 WO
2008008511 Jan 2008 WO
2008013892 Jan 2008 WO
2008027860 Mar 2008 WO
2008033742 Mar 2008 WO
2008036975 Mar 2008 WO
2008037256 Apr 2008 WO
2008039777 Apr 2008 WO
2008042948 Apr 2008 WO
2008048923 Apr 2008 WO
2008048953 Apr 2008 WO
2008051737 Apr 2008 WO
2008069420 Jun 2008 WO
2008070716 Jun 2008 WO
2008134703 Jun 2008 WO
2008078163 Jul 2008 WO
2008082737 Jul 2008 WO
2008100590 Aug 2008 WO
2008118295 Oct 2008 WO
2008119006 Oct 2008 WO
2008124772 Oct 2008 WO
2008140756 Nov 2008 WO
2008157589 Dec 2008 WO
2009003153 Dec 2008 WO
2009006225 Jan 2009 WO
2009011845 Jan 2009 WO
2009014540 Jan 2009 WO
2009015100 Jan 2009 WO
2009018086 Feb 2009 WO
2009029928 Mar 2009 WO
2009055028 Apr 2009 WO
2009055400 Apr 2009 WO
2009055407 Apr 2009 WO
2009152302 Dec 2009 WO
2009155360 Dec 2009 WO
2010017631 Feb 2010 WO
2010018316 Feb 2010 WO
2010018317 Feb 2010 WO
2010019857 Feb 2010 WO
2010030916 Mar 2010 WO
2010045383 Apr 2010 WO
2010065648 Jun 2010 WO
2010078901 Jul 2010 WO
2010111500 Sep 2010 WO
2010120989 Oct 2010 WO
2010147639 Dec 2010 WO
2011043805 Apr 2011 WO
2011068818 Jun 2011 WO
2012033532 Mar 2012 WO
2012075827 Jun 2012 WO
2012088890 Jul 2012 WO
Non-Patent Literature Citations (15)
Entry
Brochure of Tyco/Healthcare/Surgical Dynamics on Spiral Radius 90D, Publication Date: Sep. 2001, pp. 1-8.
CD Horizon M8 Multi Axial Screw Spinal System Brochure, Medtronic Sofamor Danek, no publish date.
Claris Instrumentation Brochure, G Med, pub. 1997.
Contour Spinal System Brochure, Ortho Development, no publish date.
EBI Omega 21 Brochure, EBI Spine Systems, pub. 1999.
SDRS Surgical Dynamics Rod System Brochure, Surgical Dynamics, pub. 1998-99.
Silhouette Spinal Fixation System Brochure, Sulzer Medica Spine-Tech, no publish date.
Spine, Lipcott, Williams & Wilkins, Inc. vol. 24, No. 15, p. 1495.
The Moss Miami 6.0mm System Advertisement, author unknown, no publish date.
The Rod Plate System Brochure, Stryker Howmedica Osteonics, pub. Oct. 1999.
The Strength of Innovation Advertisement, Blackstone Medical Inc., no publish date.
Versalok Low Back Fixation System Brochure, Wright Medical Technology, Inc., pub. 1997.
VLS System Variable Locking Screw Brochure, Interpore Cross International, 1999.
Xia Spinal System Brochure, Stryker Howmedica Osteonics, no publish date.
Brochure of DePuySpine on Surgical Technique, Published 2004, pp. 1-36.
Related Publications (1)
Number Date Country
20140142635 A1 May 2014 US
Provisional Applications (2)
Number Date Country
60472578 May 2003 US
60527060 Dec 2003 US
Continuations (3)
Number Date Country
Parent 13507857 Aug 2012 US
Child 14163797 US
Parent 12154448 May 2008 US
Child 13507857 US
Parent 10848946 May 2004 US
Child 12154448 US