The present invention relates generally to exhaust fans, and more particularly to exhaust fans of the type that draw contaminated air from one or more fume hoods dispersed throughout a building, mix the contaminated air with ambient air to dilute the contaminants, and vent the diluted air from the building into the ambient environment.
There are many different types of exhaust systems for buildings. In most of these the objective is to simply draw air from inside the building in an efficient manner. In building such as laboratories, fumes are produced by chemical and biological processes, which may have an unpleasant odor, is noxious or toxic. One solution is to exhaust such fumes through a tall exhaust stack which releases the fumes far above ground and roof level. Such exhaust stacks, however, are expensive to build and are unsightly.
Another solution is to mix the fumes with fresh air to dilute the contaminated air, and exhaust the diluted air upwards from the top of the building at a high velocity. The exhaust is thus diluted and blown high above the building. Examples of such systems are described in U.S. Pat. Nos. 4,806,076; 5,439,349 and 6,112,850. Unfortunately, prior systems are expensive, difficult to maintain and not easily adaptable to meet a wide range of performance specifications.
In accordance with one aspect of the present invention, an exhaust assembly is provided including an outer wall that defines a cavity therein having an air inlet formed at its bottom end, and an inner wall fastened to the outer wall and positioned in the cavity to divide it into a centrally located chamber and a surrounding annular space. A fan chamber is disposed at the bottom of the cavity and retains a fan coupled to a fan shaft to draw exhaust air in through the air inlet and blow it upward through the annular space. A drive chamber is disposed inside the outer wall and adjacent the fan chamber. A motor is pivotally mounted in the drive chamber. The motor is pivotable between a first engaged position in which a motor shaft is coupled to the fan shaft for driving the fan, and a second disengaged pivoted position.
In accordance with another aspect of the invention, an exhaust assembly is mounted onto a roof of a building for removing contaminated air from one or more building exhaust vents. The exhaust assembly includes an air inlet receiving the contaminated air, at least one ambient air entrainment zone mixing ambient air with the contaminated air to produce diluted air, and an air outlet exhausting the diluted air. A fan is coupled to a fan shaft to draw the contaminated air through the air inlet and blow it towards the air outlet. A pivotally mounted motor drives a motor shaft that is removably coupled to the fan shaft.
In accordance with yet another aspect of the invention, an exhaust assembly includes a housing separating a drive chamber from a fan chamber. A motor is pivotally mounted in the drive chamber, and includes a motor shaft. The housing defines an inlet end and an outlet end. A fan is disposed in the fan chamber and coupled to a fan shaft that is, in turn, coupled to the motor shaft to draw air through the air inlet and blow it towards the outlet. At least one passageway extends through the housing. The passageway provides access to the motor.
In the following description, reference is made to the accompanying drawings, which form a part hereof, and in which there is shown by way of illustration, and not limitation, a preferred embodiment of the invention. Such embodiment also does not define the scope of the invention and reference must therefore be made to the claims for this purpose.
Reference is hereby made to the following drawings in which like reference numerals correspond to like elements throughout, and in which:
Referring initially to
Referring also to
The control of this system typically includes both mechanical and electronic control elements. A conventional damper 36 is disposed in conduit 32 at a location slightly above each hood 22, and is automatically actuated between a fully open orientation (as illustrated) and a fully closed orientation to control exhaust flow through the chamber 28. Hence, the volume of air that is vented through each hood 22 is controlled.
The building can be equipped with more than one exhaust assembly 42, each such assembly 42 being operably coupled either to a separate group of fume hoods 22 or to manifold 34. Accordingly, each exhaust assembly 42 can be responsible for venting noxious gasses from a particular zone within the building 26, or a plurality of exhaust assemblies 42 can operate in tandem off the same manifold 34. In addition, the manifold 34 may be coupled to a general room exhaust in building 26. An electronic control system (not shown) may be used to automatically control the operation of the system.
Referring now to
Plenum 44 further includes a vertical front wall 62 disposed opposite the rear wall 60. A hood 66 extends outwardly from front wall 62 to provide a bypass air inlet extending through an opening 82 extending through wall 62, and into chamber 59. The hood 66 includes opposing vertical side walls 68, a horizontal lower wall 72, and an opposing angled upper wall 70 that together define a front opening that can be covered by a front porous screen 74 that enables ambient (bypass) air to flow through and into plenum 44. Upper wall 70 is angled down from the upper end of the plenum front wall 62, and extends out a distance beyond lower hood wall 27 to provide a rain hood that protects the interior plenum components from entrainment of snow, water, and debris. An upward-turned lip 79 that surrounds the outer periphery of upper wall 70 (See
A damper 84 is mounted in an opening 82 formed in the plenum front wall 62 and beneath the hood 70. Damper 84 includes damper blades 86 that are controlled to regulate the flow rate of fresh air into plenum 44. This flow of fresh air is indicated by Arrow B in
The exhaust air and bypass air mix inside chamber 59 to produce once-diluted exhaust air that travels upwards through exhaust outlet 92 to the fan assembly 46 as indicated in
In an alternative embodiment the riser 38 (
Referring particularly to
As shown best in
A shown best in
The removable panels 61 also enable access to the interior of the plenum 44 from any direction. This enables routine maintenance and repairs to be made without having to remove the entire exhaust assembly 42 from the riser 38 or the fan assembly 46 from the plenum 44.
Referring to
A fan shaft 114 is disposed in drive chamber 108 and is rotatably fastened by a bearing 118 to a bottom plate 116 that is welded to the bottom end of inner wall 106. Fan shaft 114 extends down into the fan chamber 112 to support a fan wheel 120 at its lower end, and extends up into drive chamber 108 where it is connected to a motor shaft 152 via a conventional coupling 122. Motor shaft 152 extends through a horizontal plate 124 that extends across the interior of the drive chamber 108 and is supported from below by a set of gussets 126 spaced around the interior of the drive chamber 108.
As best illustrated in
Wheelback 130 can also include, if desired, a set of auxiliary fan blades 134 fastened to its upper surface that produce a radially outward directed air flow. Because shaft 114 and lower bearing 118 should provide a good seal with the bottom plate 116, no source of air should be available and this air flow is not well defined. However, if a leak should occur, an air flow pattern is established in which air is drawn from the drive chamber 108 and directed radially outward through a gap formed between the upper rim of the fan wheel 130 and the bottom plate 116. As a result, exhaust air cannot escape into the drive chamber 108 even if a leak should occur.
As best illustrated in
Referring now to
Motor shaft 152 extends down through mounting bracket 154, and is connected directly to the fan shaft 114 via coupling 122 such that motor rotatably drives fan wheel 120 during operation. When maintenance operations are to be performed on motor 150 or its associated components inside drive chamber 108, bolts 156 can be removed, and coupling 122 can be loosened such that motor shaft 152 becomes disengaged from fan shaft 114.
Advantageously, one edge of mounting bracket 154 is connected to horizontal plate 124 via a hinge 158 that permits mounting bracket 154 to pivot relative to horizontal plate 124 once fastener(s) 156 have been removed. Preferably hinge 158 is oriented perpendicular to an axis extending perpendicular between through the passageways. In this regard, hinge extends perpendicular to flanges 168. Hinge 158 permits mounting bracket 154 and motor 150 to be pivoted between a first position in which shafts 152 and 114 can be engaged by coupling 122 and fasteners 156 can connect bracket 154 to plate 124, and towards one of the passageways in the direction of Arrow A to a second position whereby inspection and maintenance can be performed. Wedge-shaped flanges 168 provide additional structural support for bracket at locations proximal hinge 158 where increased forces result from motor pivoting.
Motor 150 can be manually pivoted about hinge 158 at any angle between 0° and 180° (with respect to bracket 154 and plate 124) to provide the needed access to the components inside chamber 18. In one aspect of the invention, motor 150 pivots at an angle of about 90° such that the vertical surfaces of flanges 168 proximal hinge 158 provide a stop with respect to motor 150 pivoting beyond 90°. Alternatively, the vertical flange surfaces could be positioned to provide additional clearance with respect to plate 124, thereby allowing the motor to pivot beyond 90°. In this instance, a stop in the form of flange 145 could extend from wall 144 (
It should be appreciated that hinge 158 can be disassembled in the usual manner (e.g., by removing the hinge pin) in order to facilitate removal of motor 150 from assembly 42.
Referring also to
Referring particularly to
Referring particularly to
A number of features on this system serve to enhance the entrainment of ambient air and improve fan efficiency. The flared inlet bell 58 at the bottom of the windband 52 has been found to increase ambient air entrainment by several percent. This improvement in air entrainment is relatively insensitive to the angle of the flare and to the size of the inlet bell 58. The same is true of the ring section 60 at the top of the windband 52. In addition to any improvement the ring section 60 may provide by increasing the axial height of the windband 52, it has been found to increase ambient air entrainment by 5% to 8%. Testing has shown that minor changes in its length do not significantly alter this performance enhancement.
It has been discovered that ambient air entrainment is maximized by minimizing the overlap between the rim of the nozzle 162 and the bottom rim of the windband 52. In the preferred embodiment these rims are aligned substantially coplanar with each other such that there is no overlap.
Another feature which significantly improves fan system operation is the shape of the nozzle 162. It is common practice in this art to shape the nozzle such that the exhaust is directed radially inward to “focus” along the central axis 56. This can be achieved by tapering the outer wall radially inward or by tapering both the inner and outer walls radially inward to direct the exhaust towards the central axis 56. It is a discovery of the present invention that ambient air entrainment can be increased and pressure losses decreased by shaping the nozzle 162 such that exhaust air is directed radially outward rather than radially inward towards the central axis 56. In the preferred embodiment this is achieved by flaring the top end 166 of the inner wall 106. Air entrainment is increased by several percent and pressure loss can be reduced up to 30% with this structure. It is believed the increase in air entrainment is due to the larger nozzle perimeter that results from not tapering the outer wall 100 radially inward. It is believed that the reduced pressure loss is due to the fact that most of the upward exhaust flow through the annular space 110 is near the outer wall 100 and that by keeping this outer wall 100 straight, less exhaust air is diverted, or changed in direction by the nozzle 162.
Referring particularly to
As shown in
In addition to the performance enhancements discussed above, the structure of the exhaust assembly lends itself to customization to meet the specific needs of users. Such user specifications include volume of exhaust air, plume height, amount of dilution with ambient air, and assembly height above roof top. User objectives include minimizing cost. Such customization is achieved by selecting the size, or horsepower, of the fan motor 150, and by changing the four system parameters illustrated in
Nozzle Exit Area:
Increasing this parameter decreases required motor HP, decreases ambient air entrainment, decreases plume rise. Decreasing this parameter increases required motor HP, increases ambient air entrainment, increases plume rise.
Windband Exit Area:
Increasing this parameter increases ambient air entrainment, does not significantly affect plume rise or fan flow. Decreasing this parameter decreases ambient air entrainment, does not significantly affect plume rise or fan flow.
Windband Length:
Increasing this parameter increases ambient air entrainment, increases plume rise, does not affect fan flow. Decreasing this parameter decreases ambient air entrainment, decreases plume rise, does not affect fan flow.
Windband Entry Area (Minor Effect)
Increasing this parameter increases ambient air entrainment, increases plume rise, does not affect fan flow. Decreasing this parameter decreases ambient air entrainment, decreases plume rise, does not affect fan flow.
For example, for a specified system, Table 1 illustrates how windband length changes the amount of entrained ambient air in the exhaust and Table 2 illustrates how windband exit diameter changes the amount of ambient air entrainment.
Table 3 illustrates how the amount of entrained ambient and changes as a finction of nozzle exit area and Table 4 illustrates the relationship between the amount of entrained ambient air and windband entry area.
In Tables 1-4 the dilution is calculated by dividing the windband exit flow by the flow through the fan assembly.
Referring particularly to
Referring particularly to
The above description has been that of the preferred embodiment of the present invention, and it will occur to those having ordinary skill in the art that many modifications may be made without departing from the spirit and scope of the invention. In order to apprise the public of the various embodiments that may fall in the scope of the present invention, the following claims are made.
This claims the benefit of U.S. Provisional Patent Application No. 60/537,609 filed Jan. 20, 2004 and further claims the benefit of U.S. Provisional Patent Application No. 60/558,074 filed Jul. 15, 2004, the disclosure of each of which is hereby incorporated by reference as if set forth in their entirety herein.
Number | Date | Country | |
---|---|---|---|
60537609 | Jan 2004 | US | |
60588074 | Jul 2004 | US |