Pivotal post processing tray

Information

  • Patent Grant
  • 6685180
  • Patent Number
    6,685,180
  • Date Filed
    Monday, August 13, 2001
    23 years ago
  • Date Issued
    Tuesday, February 3, 2004
    21 years ago
Abstract
A sheet post-processing apparatus is formed of a placing tray for placing a sheet thereon, a supporting device capable of moving between a support position for supporting one side of a sheet ejected above the placing tray and a retreat position for allowing the supported sheet to drop onto the placing tray, a post-processing device fixed at one side of the supporting device and applying post-processing to the sheet supported on the supporting device, a sheet shift device for moving the sheet to a position where the sheet is released from the post-processing device, and a control device for controlling the sheet shift device to move the sheet from the post-processing device after the post-processing. Also, the control device moves the supporting device to the retreat position.
Description




BACKGROUND OF THE INVENTION AND RELATED ART STATEMENT




The present invention relates to a post-processing device and an image forming apparatus provided with the post-processing device.




As a conventional sheet post-processing device, a sheet post-processing device shown in

FIG. 11

, which is disclosed in Japanese Patent Publication (KOKAI) No. H1-313261, is known. A sheet post-processing device


100


in

FIG. 11

is disposed outside an image forming apparatus main body


101


, and a placement tray


102


is disposed outside the sheet post-processing device


100


.




In

FIG. 11

, a sheet S copied in the image forming apparatus main body


101


and fed out by a paper ejection roller


105


is transferred to the sheet post-processing device


100


attached to an outside of the image forming apparatus main body


101


. The sheets S transferred to the sheet post-processing device


100


are stapled by a staple unit


103


provided in the sheet post-processing device


100


.




The sheets S in which stapling is finished are pushed by an abutting member


104


to be placed on the placement tray


102


. The abutting member


104


supports rear ends of the sheets S in a transferring direction to thereby align the rear ends, and when the stapling is finished, the abutting member


104


pushes the rear ends of the sheets S toward the placement tray


102


.




The sheet post-processing device


100


is attached to an outside of a side surface of the image forming apparatus main device


101


shown in

FIG. 11

, and the placement tray


102


is attached to an outside of the sheet post-processing device


100


. Therefore, when the sheet post-processing device


100


is installed in the image forming apparatus main body


101


, an installation area for the image forming apparatus main body


101


becomes large.




In order to solve the aforementioned problem, there is an image forming apparatus


106


shown in

FIG. 12

, which is disclosed in Japanese Patent Publication (KOKAI) No. 2000-86076. In this structure, a sheet post-processing device


107


is installed between an image forming apparatus


106


and an image reading device


108


. In the image forming apparatus


106


structured as described above, an installation area for the image forming apparatus


106


is reduced by a portion of the sheet post-processing device


107


assembled inside the image forming apparatus main body


106


.




However, a placement tray


109


on which the post-processed sheets S are placed remains to be projected outside from a side surface of the image forming apparatus


106


. Usually, a size of the placement tray


109


is extremely larger than that of the sheet post-processing device


107


, so that if the placement tray


109


remains to be projected, the installation area is not reduced.




Thus, as in a structure shown in

FIG. 13

which is disclosed in Japanese Patent Publication (KOKAI) No. H8-277059, there has been known a structure in which a sheet post-processing device


110


is attached above a placement tray


111


. The sheet post-processing device


110


includes an internal tray


112


. The internal tray


112


is formed of two trays, that is, a first tray


112




a


and a second tray


112




b.


The internal tray


112


structured as described above opens like a door from a connecting portion between the two trays toward the placement tray


111


.




The sheets S are stapled on the internal tray


112


, and when the stapling is finished, the internal tray


112


comes to an open condition. When the internal tray


112


is in the open condition, a set of the sheets S falls onto the placement tray


111


by its own weight to be placed on the placement tray


111


.




Therefore, since the internal tray


112


for supporting an entire surface of the sheet to which the stapling is applied and the placement tray for placing the stapled sheets are disposed vertically in parallel, the installation area for the post-processing device


110


can be reduced.




However, since the internal tray


112


is opened and closed like a door, the sheet post-processing device


110


is required to have a height sufficient for allowing the internal tray


112


to open. Thus, it is extremely difficult to assemble the sheet post-processing device


110


inside the image forming apparatus. Supposing that the sheet post-processing device


110


is assembled inside the image forming apparatus, when the sheet post-processing device


110


which is considerably high in order to open the internal tray is assembled inside the image forming apparatus, the height of the image forming apparatus is increased.




When the height of the image forming apparatus is increased, in case a document subjected to the image forming is set on the image forming apparatus, a position of setting the document becomes high. If the position of setting the document is high, it becomes difficult to confirm the position of setting. Therefore, there is a problem that this tall image forming apparatus is difficult to use.




Moreover, in order to install the tall sheet post-processing device


110


described above inside the image forming apparatus, a large space is required inside the image forming apparatus. However, in the known image forming apparatuses, since it has been tried to minimize a size thereof as small as possible, the large space described above is normally not formed in the known image forming apparatuses. Therefore, in the known image forming apparatus, especially, there has been a problem that the sheet post-processing device


110


can not be installed inside the image forming apparatus.




Also, as shown in

FIG. 14

, there has been known a structure disclosed in Japanese Patent Publication (KOKAI) No. 8-143211, in which an auxiliary guide


150


for supporting only a rear end portion of a sheet is disposed above a displacement tray


140


at the highest portion of a plurality of trays to be freely capable of projecting and retracting, such that the sheet is supported by the auxiliary guide


150


and a stapler


155


is moved forward and backward with respect to the sheet in a direction orthogonal to a sheet transferring direction to carry out the stapling process.




However, in this device, it is necessary to move the stapler


155


, which is relatively large and heavy, with respect to the sheet, and a motor for moving the stapler


155


also becomes bigger, so that the sheet post-processing device can not be made small. In addition, since the apparatus includes a plurality of trays, as in the aforementioned apparatus of

FIG. 11

, the sheet post-processing device is attached to the outside of the side surface of the image forming apparatus main body, so that an installation area for the image forming apparatus main body becomes large.




Accordingly, a first object of the invention is to provide an extremely compact sheet post-processing device.




A second object of the invention is to provide an image forming apparatus, in which an installation area for an entire image forming apparatus is not increased even if the sheet post-processing device is attached by selecting the installation site for the compact sheet post-processing device.




Further, a third object of the invention is to provide an image forming apparatus assembled with the sheet post-processing device, which can be easily assembled inside the known image forming apparatus and can be used easily without increasing an installation area of the image forming apparatus.




Further objects and advantages of the invention will be apparent from the following description of the invention.




SUMMARY OF THE INVENTION




To achieve the aforementioned objects, the present invention provides a sheet post-processing device for carrying out post-processing, such as a binding process or punching process, with respect to sheets ejected from an image forming apparatus main body. The sheet post-processing device comprises: a placing tray for placing sheets thereon; supporting means capable of moving between a support position for supporting upstream sides, in the transferring direction, of the sheets ejected above the placing tray, and a retreat position for allowing the supported sheets to drop onto the placing tray; post-processing means fixedly disposed at one end side of the supporting means and applying post-processing to the sheets supported on the supporting means; sheet shift means for shifting the sheets to a position where the sheets are released from the post-processing means; and control means for controlling the sheet shift means to shift the sheets from the post-processing means after the post-processing by the post-processing means is carried out. Also, the control means moves the supporting means to the retreat position.




Accordingly, since the placing tray and the supporting means are overlapped vertically, the space for the supporting means in the sheet transferring direction can be omitted, and there is no need to move the post-processing means, such as a stapler device, resulting in providing an extremely compact sheet post-processing device.




Also, the placing tray includes a first placing section, which supports forward ends of the sheets in the transferring direction, and a second placing section located below the supporting means. The second placing section is lower than the first placing section. Accordingly, the sheets can be extended over the supporting means and the placing tray to be processed, so that the post-processing can be surely carried out.




Also, the present invention provides an image forming apparatus, which comprises a placing tray formed on an upper surface of an image forming apparatus main body and placing sheets ejected from the image forming apparatus thereon; an ejecting section projected above the placing tray and disposed to be spaced away from the placing tray, in which the sheet ejecting section includes a sheet ejection port; and a sheet post-processing device including a unit formed of supporting means and post-processing means. The supporting means is provided between the placing tray and the sheet ejection port, and is capable of moving between a support position for supporting upstream sides, in the transferring direction, of the ejected sheets, and a retreat position for allowing the supported sheets to drop onto the placing tray. The post-processing means is disposed to be adjacent to one end side of the supporting means, and provided for applying post-processing to the sheets supported on the supporting means.




Further, the image forming apparatus described above further includes an image reading device for reading an image, which is disposed above the placing tray on the upper surface of the image forming apparatus main body and the ejecting section. The sheet post-processing device formed of the unit is disposed between the image reading device and the placing tray and located adjacent to the sheet ejection port.




Accordingly, there is no need to increase an installation area for the entire image forming apparatus. Even in case of the known image forming apparatus, the sheet post-processing device can be easily assembled therewith, and the image forming apparatus assembled with the sheet post-processing device, which is easy to use, can be provided without increasing the installation area for the image forming apparatus.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic view showing an entire structure of a first embodiment;





FIG. 2

is an enlarged schematic view showing a main part of the first embodiment;





FIG. 3

is an enlarged schematic view showing a portion inside a sheet post-processing device of the first embodiment;





FIG. 4

is an enlarged schematic view showing a portion inside the sheet post-processing device of the first embodiment;




FIG.


5


(


a


) is a schematic view showing a state before sheets are aligned by alignment plates;




FIG.


5


(


b


) is a schematic view showing a state when the sheets are being aligned by the alignment plates;




FIG.


5


(


c


) is a schematic view showing a state when the sheets are aligned by the alignment plates;




FIG.


5


(


d


) is a schematic view showing a state when the sheets are pushed out from a processing section by the alignment plates;




FIG.


6


(


a


) is a schematic view showing an initial position before the sheets in the first embodiment are released;




FIG.


6


(


b


) is a schematic view showing a state when the sheets in the first embodiment are being released;




FIG.


6


(


c


) is a schematic view showing a state after the sheets in the first embodiment are released;





FIG. 7

is an enlarged schematic view showing an inside of a sheet post-processing device of a second embodiment of the invention;





FIG. 8

is a schematic view showing a third embodiment of the invention;





FIG. 9

is an enlarged schematic view showing an inside of a sheet post-processing device of the third embodiment;





FIG. 10

is a schematic view showing a fourth embodiment of the invention;





FIG. 11

is a schematic view showing an example of a conventional image forming apparatus with a sheet post-processing device;





FIG. 12

is a schematic view showing another example of a conventional image forming apparatus with a sheet post-processing device;





FIG. 13

is a schematic view showing an example of a conventional sheet post-processing device; and





FIG. 14

is a schematic view showing a part of still another example of a conventional image forming apparatus with a sheet post-processing device.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS





FIGS. 1

to


6


(


c


) show a first embodiment of the invention, and

FIG. 1

is a view showing an entire structure of an image forming apparatus


1


which is provided with a sheet post-processing device FS, an automatic document feeder DF, and an image reading device Y.




The image reading device Y and the automatic document feeder DF are mounted above the image forming apparatus


1


, and a paper ejection port


2


for ejecting a sheet S on which the image is formed is provided in a space between the image forming apparatus


1


and the image reading device Y. The sheet post-processing device FS is connected to the paper ejection port


2


.




When a document d is placed on a document table


3


of the automatic document feeder DF, the document d is transferred to a document supply path


4


by respective transfer rollers, and reaches a reading section


5


. An image of the document d which has reached the reading section


5


is read by an image reading element or sensor


6


of the image reading device Y.




The document d, which has passed through the reading section


5


such that the image thereof is read, is transferred from a document ejection path


7


to a document return tray


8


. Here, in case there are images on both surfaces of the document d, the document d once transferred to the document return tray


8


is reversely sent to the document supply path


4


again. Then, the document d is reversed, and the sensor


6


reads an image on the surface opposite to the surface on which the image is read in the aforementioned process.




The image read by the sensor


6


as described above is sent as an analog signal to an image processing section


9


. After the image processing section


9


, which has received the image signal, carries out analog processing, analog-to-digital conversion, shading correction, image compression process and the like, the processed image signal is sent to an image writing section


10


.




In the image writing section


10


, which has received the processed image signal, the image signal as an output light from a semiconductor laser is irradiated to a photosensitive drum of an image forming section


11


, to thereby develop the image on the drum.




In the image forming section


11


, the image is transferred to the sheet S. The sheets S are supplied one by one by respective rollers from a cassette paper supply section


12


to a paper supply path


13


. The image forming section


11


described above is disposed in the paper supply path


13


, and the image forming section


11


transfers the image of the document d developed on the photosensitive drum to the sheet S passing through the paper supply path


13


.




The sheet S on which the image is transferred as described above is sent to a further downstream side of the paper supply path


13


. In the downstream side of the image forming section


11


in the paper supply path


13


, there is provided a fixing section


14


which fixes the image transferred in the image forming section


11


to the sheet S. When the image is fixed in the fixing section


14


as described above, the sheet S is sent further downstream, and ejected from a paper ejection port


2


through a paper ejection path


15


. The paper ejection port


2


is provided with rollers


17


, and the sheet S is ejected by the rollers


17


.




Incidentally, in case the image is formed on both sides of the sheet S, instead of sending the sheet S from the fixing section


14


to the paper ejection path


15


, the sheet S is sent from the fixing section


14


to a duplex path


16


. In the duplex path


16


, the sheet S sent to the duplex path


16


is placed such that a surface on which an image is not formed faces the image forming section


11


side, and the sheet S is sent to the paper supply path


13


again. Then, the sheet S in which the image is formed on both sides is ejected to the paper ejection port


2


through the paper ejection path


15


as in the one-side image forming.




The paper ejection port


2


is continuously connected to the sheet post-processing device FS, and the image-formed sheet S is sent from the paper ejection port


2


to the sheet post-processing device FS. Then, post-processing by the staple is carried out in the sheet post-processing device FS, and when the post-processing is finished, the sheets S are stored on a placing tray


18


.




The placing tray


18


is formed of a first placing section


18




a


located at substantially the same height as the paper ejection port


2


, and a second placing section


18




b


which is provided at an upper stream side than the first placing section


18




a


and located at a position lower than the first placing section


18




a


. The first placing section


18




a


extends to the second placing section


18




b


through a slope


18




c.






Next, the sheet post-processing device FS will be explained in detail with reference to FIGS.


2


through


6


(


c


).

FIG. 2

is an enlarged view of the sheet post-processing device FS shown in FIG.


1


.




Here, in order to specify directions of the sheet S, a side of the sheet S, which is parallel to a direction of transferring the sheet S, is defined as a transferring direction, and a side of the sheet S, which is orthogonal to the transferring direction, is defined as a width direction. Also, a case of using a staple unit is explained as a post-processing unit for the sheets S.




The sheet post-processing device FS includes a support plate


19


for supporting a rear end of the sheet S in a transferring direction; arms


20


which push the transferred sheet S onto the support plate


19


; paddles


22


which make the rear end of the sheet S placed on the support plate


19


to abut against a regulating plate


21


to thereby align the rear end of the sheet S; alignment plates


23




a


and


23




b


for aligning the width direction of the sheet S; a staple unit


26


which carries out post-processing with respect to the aligned sheets S; and a cover


27


for covering these members.




In this first embodiment, the support plate


19


has a function of a release mechanism for releasing the sheet S, which will be explained later. Also, in the sheet post-processing device FS, a controller, not shown, is provided, and first, second, third and fourth motors M


1


, M


2


, M


3


and M


4


, described later, are controlled by the controller.




In the structure described above, steps after the sheet S is ejected from the image forming apparatus


1


and is sent to the sheet post-processing device FS, in which the sheets S are post-processed after several sheets S are stacked, until the processed sheets S are placed on the placing tray


18


, are explained in detail.




As shown in

FIG. 2

, the cover


27


is formed of a ceiling surface


27




a


and side surfaces


27




b


covering four sides thereof, and a bottom of the cover


27


is opened. Also, the cover


27


is provided with a guide section


27




c


which is parallel to the ceiling surface


27




a.






An inlet


28


for the sheet S is formed on the side surface


27




b


of the cover


27


, which contacts the image forming apparatus


1


, and the sheet post-processing device FS is assembled with the image forming apparatus


1


such that the inlet


28


is continuously connected to the paper ejection port


2


of the image forming apparatus


1


. Therefore, the sheet S ejected from the paper ejection port


2


of the image forming apparatus


1


is sent to the inlet


28


of the sheet post-processing device FS by the rollers


17


.




At first, a first sheet S is transferred to the sheet post-processing device FS as described above. An inlet sensor


29


is disposed at the inlet


28


of the sheet post-processing device FS, and checks that the sheet S is transferred into the sheet post-processing device FS. Then, the sheet S is entirely sent by the rollers


17


, and when the inlet sensor


29


checks the rear end of the sheet S, the inlet sensor


29


sends a signal to a solenoid


30


.




The solenoid


30


is disposed at the ceiling surface


27




a


of the cover, and as shown in

FIG. 3

, the solenoid


30


is connected to a rotating lever


32


through a solenoid shaft


31


. One side of the rotating lever


32


is fixed to a shaft


33


, and the arms


20


are fixed to the shaft


33


. In other words, the rotating lever


32


and the arms


20


are connected through the shaft


33


.




Also, as described above, the solenoid shaft


31


and the rotating lever


32


are connected to each other, and a connecting position thereof is a position close to a side opposite to a side to which the shaft


31


is fixed. One end of a spring


34


is fixed to the connection portion between the solenoid shaft


31


and the rotating lever


32


, and the other end of the spring


34


is fixed to the side surface


27




b


of the cover in the image forming apparatus


1


side.




In the structure described above, when a signal notifying that the rear end of the sheet S passes through the inlet is sent from the inlet sensor


29


to the solenoid


30


, the solenoid


30


is turned on, and the solenoid shaft


31


is extended. When the solenoid shaft


31


is extended, the rotating lever


32


is pushed down toward a downside in

FIG. 3

while extending the spring


34


. When the rotating lever


32


is pushed down, the shaft


33


connected thereto is rotated in an arrow direction in FIG.


3


. When the shaft


33


is rotated, accordingly, the arms


20


are rotated in the arrow direction in FIG.


3


.




By the rotation of the arms


20


as described above, the rear end portion of the sheet S transferred to the sheet post-processing device FS is dropped downwardly in FIG.


3


. The rear end portion of the sheet S dropped downwardly is placed on the support plate


19


.




The support plate


19


is located below the arms


20


and at a position down from the inlet


28


, and the support plate


19


has a size for supporting only the rear end portion of the sheet S. Also, the support plate


19


is formed freely rotatably at a shaft


35


supported at the side surface


27




b


of the cover. A detailed method of rotating the support plate will be explained later.




As described above, by dropping the sheet S by the arms


20


, the rear end of the sheet S is surely placed on the support plate


19


. Since the support plate


19


has the size for supporting only the rear end of the sheet S as described above, if the arms


20


do not flaps off the sheet S, the sheet S transferred by the rollers


17


might pass through the support plate


19


.




As described above, only the rear end of the sheet S is placed on the support plate


19


, and a forward end portion of the sheet S passes through an inside of the sheet post-processing device FS to be supported by the first placing section


18




a


of the placing tray


18


. Namely, the sheet S is supported such that the sheet S extends over the support plate


19


and the first placing section


18




a.






When the arm


20


flaps off the rear end of the sheet S onto the support plate


19


, the extended spring


34


is returned to an initial position. When the spring


34


is returned to the initial position, the shaft


33


is rotated in a direction reverse to the arrow direction in

FIG. 3

, to thereby return the arms


20


to the initial position.




When the sheet S is placed on the support plate


19


, the paddles


22


shown in

FIG. 2

are rotated to push back the sheet S in a direction reverse to the forwarding direction. By pushing back the sheet S, the rear end of the sheet S is allowed to abut against the regulating plate


21


, to thereby align the rear end of the sheet S.




Also, as shown in

FIG. 4

, the paddles


22


are connected to a shaft


39


, and the paddles


22


are rotation of the shaft


39


. The shaft


39


is connected to the second motor M


2


, and the motor M


2


is disposed at the side surface


27




b


of the cover.




When the rear end of the first sheet S is aligned as described above, the second sheet S is transferred from the image forming apparatus


1


. The transferred second sheet S is disposed on the first sheet S placed on the support plate


19


, and a rear end of the second sheet S is aligned by the arms


20


.




As described above, a predetermined number of sheets S is placed on the support plate


19


. When the predetermined number of the sheets S is placed on the support plate


19


and the rear ends of the sheets S are aligned, subsequently, the alignment plates


23




a


and


23




b


, which are provided at both sides in the width direction of the sheets S, align the width directions of the sheets S.




Namely, the alignment plates


23




a


and


23




b


are respectively formed of alignment sections


24




a


and


24




b


perpendicularly colliding with the side surfaces in the width direction of the sheets S, and rack-formed sections


25




a


and


25




b


which are orthogonal to the alignment sections


24




a


and


24




b


and disposed at upper portions of the alignment sections


24




a


and


24




b


. Racks


40




a


and


40




b


are formed on side surfaces of the rack-formed sections


25




a


and


25




b


, and pinions


41




a


and


41




b


to be engaged with the racks


40




a


and


40




b


are provided. The pinion


41




a


is rotated by the third motor M


3


, and the pinion


41




b


is rotated by the fourth motor M


4


. The third motor M


3


and the fourth motor M


4


are fixed to the ceiling surface


27




a


of the cover.




Also, slide holes


42


are respectively formed in the alignment sections


24




a


and


24




b


, and the guide


27




c


is inserted into the slide holes


42


.




In this structure, after the paddles


22


align the rear ends of the sheets S, the fourth motor M


4


is rotated. When the fourth motor M


4


is rotated, the alignment plate


23




b


allows the sheets S to abut against the alignment plate


23




a


, to thereby align the width direction of the sheets S.




Movements of the alignment plate


23




b


at this time are shown in FIGS.


5


(


a


) to


5


(


d


). FIG.


5


(


a


) shows an initial state before the alignment plate


23




b


is moved. From this state, when the fourth motor M


4


is rotated so that the pinion


41




b


is rotated, the alignment plate


23




b


is moved in a direction toward the alignment plate


23




a


, that is, in a leftward direction in FIG.


5


(


a


). When the alignment plate


23




b


is moved, the alignment plate


23




b


abuts against the sheets S as shown in FIG.


5


(


b


). The alignment plate


23




b


which abuts against the sheets S is further moved toward the left in the figure, and pushes the sheets S against the alignment plate


23




a


. By pushing the sheets S against the alignment plate


23




a


, the width directions of the sheets S are aligned as shown in FIG.


5


(


c


).




Also, at this time, while the width direction of the sheets S is aligned, the rear end portions of the sheets S are inserted into the processing section


26




a


of the staple unit


26


as shown in FIG.


5


(


c


).




Although not shown in the figures, the staple unit


26


includes staples and staple driving means for driving the staples, and the staple is driven to the sheets S at the processing section


26




a


. Therefore, as described above, the staple driving means, not shown, drives the staple to the sheets S guided to the processing section


26




a


by the alignment plates


23




a


and


23




b


, to thereby carry out the post-processing.




At this time, the position where the staple is driven is the rear ends of the sheets S, and the rear ends of the sheets are supported by the support plate


19


. Since the rear ends to be stapled are supported by the support plate


19


, a stability in stapling can be maintained as compared with a case of supporting the other portions of the sheets. Namely, without displacement of the sheet S, the staple can be surely provided to the sheets S.




When the sheets S are post-processed as described above, the fourth motor M


4


is rotated reversely to the rotation at the time of aligning the sheets S, such that the alignment plate


23




b


is moved toward a right side as shown in FIG.


5


(


d


). Concurrently with the movement of the alignment plate


23




b


toward the right side, the third motor M


3


is rotated in the same direction as that of the fourth motor M


4


, to thereby move the alignment plate


23




a


toward the right side. By moving the alignment plates


23




a


and


23




b


toward the right side in FIG.


5


(


d


), the sheets S are moved to the right side, so that the post-processed sheets S are disengaged from the processing section


26




a


of the staple unit


26


. When the post-processed sheets S are completely disengaged from the processing section


26




a


, the first motor M


2


shown in

FIG. 4

is rotated in the direction of an arrow A.




The first motor M


1


is provided with a pinion gear


38


, and it is structured that a gear


37


of a fan-shaped member


36


is engaged with the pinion gear


38


. Namely, the gear


37


is formed at an arc portion of the fan-shaped member


36


, and the gear


37


is engaged with the pinion gear


38


. When the first motor M


1


is rotated in the direction of the arrow A in

FIG. 4

, the pinion gear


38


is also rotated in the direction of the arrow A. Then, by engaging the pinion gear


38


, the fan-shaped member


36


is rotated in a direction of an arrow B in FIG.


4


. When the fan-shaped member


36


is rotated, the shaft


35


and the support plate


19


are integrally rotated. Incidentally, the first motor M


1


is fixed to the side surface


27




b


of the cover.




When the support plate


19


is rotated as described above, the sheets S supported by the support plate


19


are dropped onto the placing tray


18


. Namely, the support plate


19


is rotated from the initial state in which the rear ends of the sheets S are supported by the support plate


19


as shown in FIG.


6


(


a


), and the sheets S placed on the support plate


19


are dropped down as shown in FIG.


6


(


b


). The dropped sheets S are placed on the placing tray


18


as shown in FIG.


6


(


c


). At this time, the rear end portions of the post-processed sheets S are placed on the second placing section


18




b


of the placing tray


18


, and the forward end portions of the sheets S are placed on the first placing section


18




a


as shown in FIG.


6


(


c


).




When the support plate


19


is rotated such that the sheets S are placed on the placing tray


18


as described above, the first motor M


1


is rotated reversely to the direction of the arrow A in FIG.


4


. In accordance therewith, the fan-shaped member


36


is rotated reversely to the direction of the arrow B, and the support plate


19


is returned to the initial position.




As described above, while the support plate


19


supports the transferred sheets S, the support plate


19


has a releasing function for dropping and releasing the post-processed sheets S.




According to the first embodiment described above, by rotating the support plate


19


, the post-processed sheets S can be dropped right under the support plate


19


. Furthermore, since the placing tray


18


is provided under the support plate


19


, by merely rotating the support plate


19


, the sheets S can be placed on the placing tray


18


. Therefore, it is not necessary to provide the placing tray


18


outside the image forming apparatus


1


, so that a floor space for installation can be reduced.




Also, since the support plate


19


supports only the rear end portions of the sheets S transferred from the image forming apparatus


1


such that the forward end portions of the sheets are supported by the placing tray


18


, a size of the support plate


19


in the transferring direction can be reduced. By reducing the size of the support plate


19


, a space for rotating the same can be small. Namely, the entire sheet post-processing device FS can be made compact. Therefore, the compact sheet post-processing device FS can be easily assembled with the image forming apparatus, and there is no such a problem that the image forming apparatus


1


becomes tall.




Further, in the known image forming apparatus, even if the image reading device Y and the automatic document feeder DF are disposed above the image forming apparatus


1


, the sheet post-processing device FS can be installed in a space between the image forming apparatus


1


and the image reading device Y.




Incidentally, although the staple unit is adopted as the sheet post-processing unit in this embodiment, it is needless to say that other post-processing unit, such as a punching, can be used. Also, although the first motor M


1


is used for rotating the support plate


19


in the embodiment, other driving device, such as a solenoid, can be used instead. Further, though the solenoid is used for rotating the arm


20


, other driving device can be used instead.




Incidentally, the image forming apparatus


1


has a post-processing execution mode, in which stapling or punching is carried out to each set of a predetermined number of sheets by using the sheet post-processing device to provide a required number of post-processed sets of the sheets, and a straight ejection mode, in which the sheets are directly stacked and placed onto the placing tray


18


without carrying out the post-processing described above. The device of the embodiment can be easily adapted to both of these modes.




Namely, when an instruction of carrying out the post-processing with respect to the ejection sheet is issued, as explained above, a predetermined number of the sheets is supported by the support plate


19


. This state of the support plate


19


constitutes a support state, which is shown in FIG.


6


(


a


). Then, after the predetermined number of the sheets is supported by the support plate


19


and the post-processing is carried out, the support plate


19


becomes a release state in which the sheets S are dropped and released on the placing tray


18


as shown in FIG.


6


(


b


).




On the other hand, in case an instruction of carrying out the straight ejection mode is issued, as shown in FIG.


6


(


b


), the support plate


19


is held at the position for allowing the sheets S to be dropped and released without supporting the sheets S. Namely, the support plate


19


is in the release state shown in FIG.


6


(


b


) from the beginning without taking the support state shown in FIG.


6


(


a


).




Incidentally, the initial position or state of the support plate


19


before setting of the respective modes can be either the support state or the release state. When the support plate


19


is in the support state as the initial state, after setting of carrying out the straight ejection mode, the support plate


19


can be moved to the position of FIG.


6


(


b


) as the release state. On the contrary, when the initial state of the support plate


19


is set at the position of FIG.


6


(


b


) as the release state, after setting the post-processing execution mode, the support plate


19


can be moved to the support state in which the sheets are supported. By structuring the device as described above, the device can be easily adapted to any of the post-processing execution mode or the straight ejection mode.





FIG. 7

shows a second embodiment of the invention, wherein means for releasing the post-processed sheets and the alignment plates are integrally formed. The constituents other than this character are the same as in the first embodiment, so that the same references as those in the first embodiment are used to designate the constituents, to thereby omit the detailed explanations therefor.




In the second embodiment, the alignment sections


44




a


and


44




b


and rack-formed sections


45




a


and


45




b


are respectively formed in the alignment plates


43




a


and


43




b


, and the alignment plates


43




a


and


43




b


are further provided with support sections


46




a


and


46




b


. The rack-formed sections


45




a


and


45




b


are disposed respectively at upper portions of the alignment sections


44




a


and


44




b


, and the support sections


46




a


and


46




b


are disposed respectively at lower portions of the alignment sections


44




a


and


44




b


such that the alignment plates


43




a


and


43




b


have U-shaped forms.




In addition, racks


47




a


and


47




b


are formed in the rack-formed sections


45




a


and


45




b


, such that racks


47




a


and


47




b


engage the pinions


41




a


and


41




b


. The pinion


41




a


is rotated by the third motor M


3


, and the pinion


41




b


is rotated by the fourth motor M


4


.




In the second embodiment structured as described above, the first sheet S is ejected from the paper ejection port


2


of the image forming apparatus


1


, and the sheet S is sent from the inlet


28


of the sheet post-processing device FS into the sheet post-processing device FS. The sheet S sent into the sheet post-processing device FS is dropped off by the arms


20


,


50


that the rear end of the sheets is placed on the support sections


46




a


and


46




b.


At this time, the forward end of the sheet S is placed on the first placing section


18




a


of the placing tray


18


. When the sheet S is placed on the support sections


46




a


and


46




b


as described above, the paddles


22


push the rear end of the sheet S against the regulating plate


21


, to thereby align the rear end of the sheet S.




Then, the second sheet S and the third sheet S are successively transferred in order from the image forming apparatus


1


, and as in the first sheet S, these sheets are respectively placed on the support sections


46




a


and


46




b


to thereby align the rear ends thereof.




When a predetermined number of sheets S is placed on the support sections


46




a


and


46




b


as described above, the fourth motor M


4


is rotated, and the alignment plate


43




b


is moved in a direction toward the alignment plate


43




a


. In accordance with the movement of the alignment plate


43




b


, the sheets S supported by the support section


46




b


of the alignment plate


43




b


are moved. As described above, the alignment plate


43




b


and the sheets S are moved in the direction toward the alignment plate


43




a


, and the sheets S are aligned by the alignment section


44




a


of the alignment plate


43




a


and the alignment section


44




b


of the alignment plate


43




b.






When the sheets S are aligned by allowing the sheets S to abut against the alignment plate


43




a


, the sheets S are inserted into the processing section


26




a


of the staple unit


26


. When the sheets S are inserted into the processing section


26


as described above, the sheets S are stapled by the staple unit


26


. When the sheets S are post-processed by stapling, the third motor M


3


and the fourth motor M


4


are rotated, so that the alignment plates


43




a


and


43




b


are simultaneously moved in a direction toward a right lower side in FIG.


7


. Thus, the post-processed sheets S are disengaged from the processing section


26




a.






When the post-processed sheets S are completely disengaged from the processing section


26




a


, only the fourth motor M


4


is rotated, and the alignment plate


43




b


is further moved in the direction toward the right lower side in FIG.


7


. By moving only the alignment plate


43




b


as described above, the sheets S supported by the support sections


46




a


and


46




b


are disengaged from the support sections


46




a


and


46




b


. The sheets S disengaged from the support sections


46




a


and


46




b


are placed on the placing tray


18


disposed below the sheet post-processing device FS.




As described above, while the support sections


46




a


and


46




b


support the transferred sheets S, the support sections


46




a


and


46




b


have a releasing mechanism for releasing the post-processed sheets S.




According to the second embodiment described above, by merely increasing a distance between the alignment plate


43




a


and the alignment plate


43




b


, the sheets S in which the post-processing is completed can be released onto the placing tray


18


. Namely, since there is no need to drop the sheets S by rotating the support sections


46




a


and


46




b


, a space for rotating the support sections


46




a


and


46




b


is not required. Therefore, the sheet post-processing device FS can be made much smaller.




This compact sheet post-processing device FS can be assembled with the known image forming apparatus which is not provided with a large space for installing the sheet post-processing device therein.




Incidentally, although the sheets S are pushed from one direction, that is, from the alignment plate


43




b


so as not to move the alignment plate


43




a


in case of aligning the sheets S by the alignment plates


43




a


and


43




b


in the second embodiment, it can be arranged such that both the alignment plates


43




a


and


43




b


are moved to align the sheets S. Namely, in case of aligning the sheets S, the alignment plate


43




a


is moved in a direction toward the alignment plate


43




b


, and the alignment plate


43




b


is moved in a direction toward the alignment plate


43




a


, such that the alignment plates may be moved from both directions. In this case, after the sheets S are aligned, while the condition of aligning the sheets S is maintained, the alignment plates


43




a


and


43




b


are moved in the direction toward the staple unit


26


, so that the sheets S are inserted into the processing section


26




a.






Also, when the post-processed sheets S are released from the alignment plates


43




a


and


43




b


, only the alignment plate


43




b


is moved away from the alignment plate


43




a


and the alignment plate


43




a


does not move. However, it can be structured that the alignment plate


43




a


is also moved. Namely, both the alignment plate


43




a


and alignment plate


43




b


can be moved away from each other, so as to release the post-processed sheets S.





FIGS. 8 and 9

show a third embodiment, wherein the support plate for supporting the sheets constitutes the means for releasing the post-processed sheets, and the support plate is extended and contracted. The structures other than this are the same as in the first embodiment. The constituents which are the same as those in the first embodiment are designated by the same references, and detailed explanations therefor are omitted herewith.




In the third embodiment, the sheet post-processing device FS is provided with a support plate


48


for supporting the sheets S transferred from the image forming apparatus


1


. The support plate


48


is formed of a base


48




a


and an expanding and contracting section


48




b


, and the base


48




a


is rotated by the rotation of the shaft


35


.




The expanding and contracting section


48




b


has a cylindrical shape including a hollow inside, and a hollow portion thereof is provided with a spring


49


. Also, the base


48




a


is inserted into the cylindrical expanding and contracting section


48




b


, so that the expanding and contracting section


48




b


is movable along the base


48




a


through the spring


49


. Further, a projection


50


is formed in the expanding and contracting section


48




b


, and when the projection


50


is moved, the expanding and contracting section


48




b


is accordingly moved along the base


48




a


while contracting the spring


49


. The support plate


48


shown in

FIGS. 8 and 9

is in the initial state, in which the expanding and contracting section


48




b


is extended to the maximum.




Also, in the third embodiment, below the shaft


35


, a cam


51


is formed at the side surface


27




b


of the cover


27


of the sheet post-processing device FS at the image forming apparatus


1


side. Thus, when the support plate


48


is rotated, the projection


50


formed at the expanding and contracting section


48




b


is moved along an outline curve


51




a


formed at the cam


51


.




When the support plate


48


is rotated from the initial state, the projection


50


is moved along the outline curve


51




a


in accordance with the rotation, such that the projection


50


is moved to get closer to the shaft


35


. When the projection


50


is moved to get closer to the shaft


35


, the expanding and contracting section


48




b


is also moved to get closer to the shaft


35


. Namely, while the expanding and contracting section


48




b


contracts the spring


49


, the expanding and contracting section


48




b


moves such that an entire length of the support plate


48


is shortened. Then, when the support plate


48


is rotated for approximately 90 degrees from the initial state, the support plate


48


has the shortest length.




Also, when the support plate


48


is in the initial state, in order to prevent the projection


50


from contacting the alignment plate


23




b


, a portion of the alignment plate


23




b


, which is located at a position corresponding to the projection


50


, is notched to form a notched portion


52


.




Further, in this embodiment, a first placing section


53




a


of a placing tray


53


is formed of a member which is separated from a second placing section


53




b


, and by contracting a spring


54


, the first placing section


53




a


is lowered. The first placing section


53




a


is disposed to be rotatable around a shaft


55


.




In this structure, when the sheet S is transferred to the sheet post-processing device FS from the image forming apparatus


1


, the sheet S is placed onto the support plate


48


by the arms


20


. When a predetermined number of the sheets S is placed on the support plate


48


, the rear ends of the sheets S in the transferring direction are aligned by the paddles


22


, and the width direction of the sheets S is aligned by the alignment plates


23




a


and


23




b


. Then, the aligned sheets S are stapled by the staple unit


26


. When the sheets S are stapled, the first motor M


1


is rotated to rotate the shaft


35


, resulting in rotating the support plate


48


.




When the support plate


48


is rotated and moved in an arrow direction in

FIG. 9

, the projection


50


is located at a distal end portion of the outline curve


51




a


of the cam


51


. When the support plate


48


is further rotated, the projection


50


is moved along the outline curve


51




a


. When the projection


50


is moved along the outline curve


51




a


as described above, a distance between the projection


50


and the shaft


35


is shortened. Namely, the spring


49


is contracted, so that the entire length of the support plate


48


is shortened.




By rotating the support plate


48


in the arrow direction in

FIG. 9

as described above, the sheets S placed on the support plate


48


are dropped onto the placing tray


53


. At this time, the rear ends of the sheets S are placed on the second placing section


53




b


, and the forward ends of the sheets S are placed on the first placing section


53




a


. After the support plate


48


allows the sheets S to drop onto the placing tray


53


, the support plate


48


is rotated reversely to the arrow direction in

FIG. 9

to be returned to the initial state. At this time, since the projection


50


is moved away from the shaft


35


, the spring


49


is extended, so that the entire length of the support plate


48


is elongated.




According to the third embodiment, since the support plate


48


can be kept elongated in the initial state before the support plate


48


is rotated, the support plate


48


can securely support the sheets S. Also, since the sheets S can be placed on the placing tray


53


by merely rotating the support plate


48


from the initial state, it is not necessary to specially provide the placing tray outside the side surface of the image forming apparatus


1


, so that the installation area can be reduced.




Also, in the support plate


48


, as the support plate


48


is rotated, the length thereof is shortened. Thus, a space required for rotating the support plate


48


can be small. Accordingly, the sheet post-processing device FS can be made much more compact.




Further, as described above, since the support plate


48


is shortened in accordance with the rotation thereof, even if a large number of sheets S is placed on the placing tray


53


, the rotated support plate


48


does not contact the sheets S. Therefore, much more sheets S can be placed on the placing tray


53


.




In addition, since the spring


54


is disposed under the first placing section


53




a


of the placing tray


53


, when the sheets S are placed on the first placing tray


53




a


, the spring


54


is contracted due to the weight of the placed sheets S. When the spring


54


is contracted, the first placing section


53




a


is rotated around the shaft


55


. As described above, in accordance with an amount of the sheets S placed on the first placing section


53




a


, the first placing section


53




a


contracts the spring, so that the position of the first placing section


53




a


can be lowered.




By lowering the position of the first placing section


53




a


in accordance with the amount of the sheets S, even if the amount of placing the sheets S is increased, the rotation of the paddles


22


or the like is not prevented. Therefore, much more sheets S can be placed on the placing tray


53


.





FIG. 10

shows a fourth embodiment, wherein the placing tray is integrally formed with the cover of the sheet post-processing device. Structures other than that are the same as those in the first embodiment. The constituents which are the same as those in the first embodiment are designated by the same references as in the first embodiment, so that the detailed explanations thereof are omitted herewith.




In the fourth embodiment, a placing tray section


57


is formed at a cover


56


of the sheet post-processing device FS. The placing tray section


57


includes a first placing section


57




a


and a second placing section


57




b


. The first placing section


57




a


is located at a position higher than that of the second placing section


57




b


, and the first placing section


57




a


and the second placing section


57




b


are connected through an inclined section


57




c


. It is desirable that the position of the first placing section


57




a


is at substantially the same height as that of the paper ejection port


2


.




Also, an end portion of the second placing section


57




b


, which is opposite to the inclined section


57




c


, is connected to a side surface


56




a


of the cover


56


. The second placing section


57




b


is located below the support plate


19


, and positioned to have a distance from the support plate


19


such that the support plate


19


does not collide with the second placing section


57




b


even if the support plate


19


is rotated.




If the placing tray does not have a raised portion, such as the first placing section


57




a


, the sheet S ejected from the paper ejection port


2


is liable to be dropped from the support plate


19


due to its own weight. Namely, since the sheet is not placed on the support plate


19


, the post-processing by the staple unit


26


is not carried out with respect to the sheet. Also, even if the sheet is placed on the support plate


19


, the forward end portion of the sheet S in the transferring direction becomes heavy, so that the sheet S is not aligned neatly.




However, in the fourth embodiment of the invention, since the first placing section


57




a


and the second placing section


57




b


are provided in the sheet post-processing section FS, even in a image forming apparatus which does not have a first placing section, the beautiful post-processing of the sheet is made.




Further, according to the fourth embodiment, even in the image forming apparatus in which there is no slope in the placing tray, without providing a placing tray separately, the compact sheet post-processing device FS can be assembled therewith. Therefore, the entire image forming apparatus can be made compact.




As described above, according to the present invention, in the sheet post-processing device, supporting means for supporting the rear ends of the sheets to be post-processed is moved to a position of releasing the sheets in the dropping direction, and the sheet post-processing device includes means for shifting the sheets from the post-processing means. Thus, the sheet post-processing device can be made compact.




Further, according to the present invention, since the means for aligning the sheets supported on the supporting means is provided, post-processing in the state that the side edges of the sheets are aligned can be carried out. Also, since the shift means for moving the sheets may be also used as the aligning means, the structure can be simplified.




Further, since the supporting means is formed of freely rotatable supporting means, by merely rotating the supporting means, the sheets can be placed on the placing tray. Also, since the supporting means supports only the rear ends of the sheets, the size of the supporting means can be small, and it is not necessary to have a large space for rotating the supporting means. Therefore, the sheet post-processing device can be made much more compact.




In addition, since the supporting means may be capable of expanding and contracting freely, in accordance with the rotation of the supporting means, the supporting means can be contracted. Therefore, a space for rotating the supporting means can be further reduced, and the entire sheet post-processing device can be made smaller. Even if the sheet post-processing device is assembled with the image forming apparatus, a height of the image forming apparatus as a whole is not increased. Since the height of the entire image forming apparatus is not increased, the image forming apparatus is used easily.




Also, an upper surface of the apparatus may constitute the placing tray, and the sheet post-processing device made into a unit may be provided between the placing tray and the ejection port of the image forming apparatus of a type including the sheet projection port projecting further above the placing tray. Thus, the sheet post-processing device can be assembled with the image forming apparatus without increasing an area for installing the image forming apparatus and a height thereof.




Also, the placing tray for placing the sheets is formed of a first placing section for supporting the forward end side in the transferring direction of the sheets supported by the supporting means, and a second placing section for supporting the rear end portions in the transferring direction of the sheets when the sheets are dropped, and the second placing section is set at a position lower than that of the first placing section. Therefore, before the sheets are dropped, the sheets can be securely supported by the supporting means and the first placing section, and when the sheets are going to drop, the sheets can be surely released from the supporting means.




Further, according to the present invention, the compact sheet post-processing device is provided between the image forming apparatus and the image reading device. Accordingly, it is not necessary to provide the sheet post-processing device outside the image forming apparatus, so that the image forming apparatus can be made smaller, and the installation area thereof can be reduced.




While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative and the invention is limited only by the appended claims.



Claims
  • 1. A sheet post-processing apparatus for post-processing sheets ejected from an apparatus, comprising:a placing tray for placing a sheet thereon, means for dropping the sheet onto the placing tray immediately after the sheet is ejected from said apparatus, said means being located above the placing tray and including a lateral shaft, arms attached to the shaft, and a device attached to the shaft for rotating the same so that the arms push the sheet onto the placing tray immediately after the sheet is ejected. supporting means disposed above the placing tray and having a support position and a retreat position, said supporting means being able to move between the support position and the retreat position so that the supporting means in the support position supports one side of the sheet ejected to the placing tray and allows in the retreat position to drop the sheet onto the placing tray, post-processing means fixedly disposed at one side of the supporting means and applying post-processing to the sheet supported on the supporting means, sheet shift means situated near the post-processing means, said sheet shift means laterally moving the sheet supported on the supporting means into the post-processing means and moving the sheet after the post-processing outside the post-processing means, and control means for controlling the sheet shift means to move the sheet to and from the post-processing means, and the supporting means to move to the retreat position.
  • 2. A sheet post-processing apparatus according to claim 1, further comprising aligning means situated near the supporting means for aligning a side edge of the sheet supported on the supporting means.
  • 3. A sheet post-processing apparatus according to claim 1, wherein said sheet shift means operates as aligning means for aligning a side edge of the sheet supported on the supporting means.
  • 4. A sheet post-processing apparatus according to claim 1, wherein said placing tray includes a first placing section for supporting a forward end of the sheet in a transferring direction, and a second placing section located below the supporting means at a position lower than that of the first placing section.
  • 5. A sheet post-processing apparatus according to claim 4, wherein said first placing section is pivotally attached to the second placing section so that the first placing section can be lowered.
  • 6. A sheet post-processing apparatus according to claim 5, further comprising a spring situated under the first placing section to urge the first placing section upwardly.
  • 7. A sheet post-processing apparatus according to claim 1, wherein said sheet shift means includes two aligning plates spaced apart from each other, each aligning plate having a vertical alignment section, and a horizontal support section extending from the alignment section to support the sheet as the supporting means.
  • 8. A sheet post-processing apparatus for post-processing sheets ejected from an apparatus, comprising:a placing tray for placing a sheet thereon, supporting means disposed above the placing tray and having a support position and a retreat position, said supporting means being able to move between the support position and the retreat position so that the supporting means in the support position supports one side of the sheet ejected to the placing tray and allows in the retreat position to drop the sheet onto the placing tray, said supporting means including a shaft to be rotatable orthogonal to a transferring direction of the sheet, a base, an expanding and contracting section so that the expanding and contracting section expands and contracts relative to the base along the transferring direction of the sheet, a projection projecting from the expanding and contracting section, a can engaging the projection for expanding and contracting the expanding and contracting section, post-processing means fixedly disposed at one side of the supporting means and applying post-processing to the sheet supported on the supporting means, sheet shift means situated near the post-processing means, said sheet shift means laterally moving the sheet supported on the supporting means into the post-processing means and moving the sheet after the post-processing outside the post-processing means, and control means for controlling the sheet shift means to move the sheet to and from the post-processing means, and the supporting means to move to the retreat position.
Priority Claims (1)
Number Date Country Kind
2000-245624 Aug 2000 JP
US Referenced Citations (7)
Number Name Date Kind
4611741 Wilson Sep 1986 A
5098074 Mandel et al. Mar 1992 A
5713566 Coombs et al. Feb 1998 A
5984299 Hirota et al. Nov 1999 A
6330999 Coombs et al. Dec 2001 B2
6382615 Ishiguro et al. May 2002 B1
6450934 Coombs Sep 2002 B1
Foreign Referenced Citations (4)
Number Date Country
1-313261 Dec 1989 JP
8-143211 Jun 1996 JP
8-277059 Oct 1996 JP
2000-86076 Mar 2000 JP