Field of the Invention—The present invention relates generally to a pivotally manipulable toy, and more particularly to a multi-segment pivotally manipulable toy with apertures in a number of the segments to facilitate aiding a user to configure the toy into any of a plurality of shapes each exposing a stated number of apertures.
In the past it has frequently been difficult to teach children in a manner that is both enjoyable and educational for the children. Teaching children the letters of the alphabet and numbers in an enjoyable manner has been the goal of many toy manufacturers for some time. Past toys that could be formed into the letters of the alphabet or numbers have often had multiple parts that could easily be lost. Such toys have also typically been difficult to manipulate correctly to form the letters or numbers. Many of these toys have been complicated and so difficult to manipulate as to frustrate the child, with many children being unsure as to whether they had manipulated the toy properly to correctly form the desired letters or numbers. These toys also often have a plethora of links or sections which have made it nearly impossible for a young child who is beginning to learn the alphabet and to count to form letters or numbers correctly.
Therefore, it is desirable to provide a pivotally manipulable toy that is educational, fun, and easy enough for a child as young as approximately two years of age to manipulate. It is also desirable that such a toy does not have multiple separate pieces that could tend to easily be lost. It is also desirable to provide a toy that has a verification system enabling a child using the toy to be certain as to whether or not the toy has been manipulated correctly to form a letter or numeral. It is also desirable to provide a toy that can be formed into many different shapes in addition to letters and numbers. It is further desirable to provide a manual that illustrates the toy in many different configurations forming many different shapes correctly.
Such a toy should also be of a construction which is both durable and long lasting, and it should also require little or no maintenance or special handling to be provided by the user throughout its operating lifetime. In order to enhance the market appeal of such a toy, it should also be of relatively inexpensive construction to thereby afford it the broadest possible market. Finally, it is also an objective that all of the aforesaid advantages and objectives of such a toy be achieved without incurring any substantial relative disadvantage.
An embodiment of the pivotally manipulable toy of the present invention includes a first solid end section having a first end and a second end, a plurality of intermediate sections each having a first end and a second end, and a second solid end section having a first end and a second end. One of the intermediate sections is pivotally coupled at its second end to the first solid end section near its second end. This intermediate section is then pivotally coupled near its first end to another of the intermediate sections near its second end. All but one of the remainder of the intermediate sections are pivotally coupled near the first end thereof to another of the intermediate sections near its second end thereof.
The final intermediate section is pivotally coupled near its first end to the second solid end section near its second end. This final intermediate section is also pivotally coupled near its second end to the only intermediate section remaining with a second end still uncoupled, near the second end of the remaining uncoupled intermediate section. The sections are all configured to form a consecutive plurality of sections such that each end of each section is coupled to no more than one other intermediate or solid end section. The first ends of each of the solid end sections remain uncoupled. A user can pivotally manipulate the toy to form a plurality of shapes.
Another embodiment of the present invention comprises a first solid end section having a first end and a second end, five intermediate sections, each having opposite first and second ends, with each of these intermediate sections containing several counting apertures, and a second solid end section having a first end and second end. The first solid end section is pivotally coupled near its second end to the first intermediate section near its second end. The first intermediate section is coupled near its first end to the second intermediate section near its second end. The second intermediate section is coupled near its first end to the third intermediate section near its second end. The third intermediate section is coupled near its first end to the fourth intermediate section near its second end. The fourth intermediate section is coupled near its first end to the fifth intermediate section near its second end. The fifth intermediate section is coupled near its first end to the second solid end section near its second end. The first ends of each of the solid end sections remain uncoupled. A user can pivotally manipulate the toy to form many shapes.
Another embodiment of the present invention comprises a method of producing a pivotally manipulable toy comprising providing a first solid end second having a first end and a second end, providing several intermediate sections each containing more than one counting aperture, and each having a first end and a second end, providing a second solid end section having a first end and a second end, forming a consecutive plurality of intermediate sections by pivotally coupling the intermediate sections end to end, and pivotally coupling each of the end sections to an opposite end of the consecutive plurality of intermediate sections. The first ends of each of the solid end sections remain uncoupled. The toy is formed such that a user can pivotally manipulate it to form more than one shape.
It may therefore be seen that the present invention teaches a pivotally manipulable toy that is educational, fun, and easy enough for a child as young as approximately two years of age to manipulate. It does not have multiple separate pieces that could tend to easily be lost, and it has a verification system that enables a child using the toy to be certain as to whether or not the toy has been manipulated correctly to form a letter or numeral. The pivotally manipulable toy of the present invention is a toy that can be formed into many different shapes in addition to letters and numbers. it also may include a manual that illustrates the toy in many different configurations forming many different shapes correctly. The manual further comprises instructions for playing a plurality of games with the toy.
The pivotally manipulable toy of the present invention is of a construction which is both durable and long lasting, and it should also require little or no maintenance to be provided by the user throughout its operating lifetime. The pivotally manipulable toy of the present invention is also be of relatively inexpensive construction to enhance its market appeal and to thereby afford it the broadest possible market. Finally, the pivotally manipulable toy of the present invention achieves all of the aforesaid advantages and objectives without incurring any substantial relative disadvantage.
These and other advantages of the present invention are best understood with reference to the drawings, in which:
A pivotally manipulable toy 100 an example of which is illustrated in the figures is an educational, fun, pivotally adjustable mechanism. The pivotally manipulable toy 100 is configured so that it can be pivotally manipulated to form all the letters of the alphabet, the Arabic numerals 0-9, and various shapes.
The word “shapes” throughout this Application is understood to mean, for example, letters of the alphabet, numbers, geometric shapes (including, but not limited to, squares, rectangles, kites, triangles and other polygons), houses, fences, house lots, houses with chimneys, decks, porches, garages, car ports, cranes, forklifts, jack in the boxes, windmills, fans, bridges, backhoes, caterpillars, snails, ducks, giraffes, ostriches, wiener dogs, and many other shapes and objects that would become apparent to one pivotally manipulating the pivotally manipulable toy 100.
An embodiment of the pivotally manipulable toy 100 can be any color, could be multi-colored, could be colored in any number of designs or patterns, or could simply be the color of the material used to make the pivotally manipulable toy 100.
Because of the pivotally manipulable toy's 100 unique combination of solid sections and sections with apertures, which will be further discussed below, with each object that is formed there are a specific number of apertures that are unobstructed by a solid section or another piece with apertures.
A pivotally manipulable toy manual is also preferably provided. Such a manual may illustrate the way that shapes look when they are formed with the pivotally manipulable toy 100, and the manual correlates each of these shapes with the number of apertures that should be unobstructed when the pivotally manipulable toy 100 has been properly pivotally manipulated to form the object. The pivotally manipulable toy manual may also provide directions for playing a series of educational games with the pivotally manipulable toy 100, including games that involve counting, forming letters of the alphabet, and forming words.
A preferred embodiment according to one aspect of the present invention is illustrated in
A first solid end section 102 has a first end 104 and a second end 106 opposite the first end 104. There is an attachment aperture 109 (illustrated in
A first intermediate section 110 has a first end 112 and an opposite second end 114. Located in the first intermediate section 110 is an attachment aperture 115 (illustrated in
In the preferred embodiment, the first intermediate section 110 comprises a plurality of counting apertures 116, 118, the annular recess 120, 122, and 124 that are approximately evenly spaced between the first end 112 and the second end 114. While in the embodiment shown in the figures the first intermediate section 110 comprises the five counting apertures 116, 118, 120, 122, and 124, other numbers of counting apertures could instead be used in other embodiments of the present invention.
A second intermediate section 126 in a preferred embodiment is substantially identical to first intermediate section 110. The second intermediate section 126 has a first end 128 and a second end 130 opposite the first end 128. In the preferred embodiment, the second intermediate section 126 also has five counting apertures 132, 134, 136, 138, and 140 as does the first intermediate section 110, with the counting apertures 132, 134, 136, 138, and 140 being spaced apart in substantially the same configuration as the counting apertures 116, 118, 120, 122, and 124 in the first intermediate section 110.
The second intermediate section 126 has an attachment aperture 129 (illustrated in
A third intermediate section 144 in the preferred embodiment of the present invention is substantially identical to the first and second intermediate sections 110 and 126 with five spaced apart counting apertures located therein and has a first end 131 and a second end 133 opposite the first end 131. An attachment aperture 135 is defined in the second end 133. The second end 133 is placed on top of the first end 128 of the second intermediate section 126 such that the attachment aperture 127 and the attachment aperture 135 are in substantial alignment. The second intermediate section 126 and the third intermediate section 144 are operably pivotally coupled by inserting a metal rivet 137 through the attachment apertures 127 and 135. The third intermediate section 144 also defines an attachment aperture 139 proximate first end 131.
A fourth intermediate section 146 in the preferred embodiment of the present invention is substantially identical to the first, second and third intermediate sections 110, 126, and 144 with five spaced apart counting apertures located therein. The fourth intermediate section 146 includes a first end 141 and a second end 143 opposite the first end 141. The fourth intermediate section 146 has an attachment aperture 145 proximate the second end 143. The second end 143 of the fourth intermediate section 146 is placed on top of the first end 131 of the third intermediate section 144 such that the attachment apertures 145 and 139 are in substantial alignment. A metal rivet 147 is inserted into the attachment apertures 145 and 139 to pivotally couple the third intermediate section 144 to the fourth intermediate section 146. The fourth intermediate section 146 also has an attachment aperture 167 proximate the first end 141.
The fifth intermediate section 148 in the preferred embodiment of the present invention is substantially identical to the first, second, third, and fourth intermediate sections 110, 126, 144, and 146. The fifth intermediate section 148 has a first end 161 and a second end 163 opposite the first end 161. The fifth intermediate section 148 has an attachment aperture 165 proximate the second end 163. The fifth intermediate section 148 is placed on top of the fourth intermediate section 146 such that the attachment apertures 165 and 167 are in substantial alignment. A metal rivet 169 is inserted into the attachment apertures 165 and 167 pivotally coupling the fourth intermediate section 146 to the fifth intermediate section 148. The fifth intermediate section 148 also has an attachment aperture 149 proximate the first end 161.
A second solid end section 150 has a first end 152 and a second end 154 opposite the first end 152. The second solid end section 150 in the preferred embodiment of the present invention is substantially identical to the first solid end section 102. The second solid end section 150 has an attachment aperture 151 (illustrated in
This configuration of coupling each successive section on top of the previous section allows the pivotally manipulable toy to be folded into a compact, stacked configuration as illustrated in
With respect to the number of unobstructed counting apertures, the first solid end section 102 has no counting apertures. The first intermediate section 110 is overlapped by the first solid end section 102, and therefore has no unobstructed counting apertures visible. The second intermediate section 126 is not overlapped and therefore has five unobstructed counting apertures visible. The third intermediate section 144 also is not overlapped, and therefore has five counting apertures visible. The fourth and fifth intermediate sections 146, 148 exactly overlap with the five counting apertures of these intermediate sections 146, 148 in substantial alignment, and therefore these two sections combine to reveal five more unobstructed visible counting apertures.
The total number of unobstructed counting apertures in this “A” letter configuration is, therefore, 15. Referring back to
It may therefore be appreciated from the above detailed description of the exemplary embodiments of the present invention that it teaches a pivotally manipulable toy that is educational, fun, and easy enough for a child as young as approximately two years of age to manipulate. It does not have multiple separate pieces that could tend to easily be lost, and it has a verification system that enables a child using the toy to be certain as to whether or not the toy has been manipulated correctly to form a letter or numeral. The pivotally manipulable toy of the present invention is a toy that can be formed into many different shapes in addition to letters and numbers. It also may include a manual that illustrates the toy in many different configurations forming many different shapes correctly.
The pivotally manipulable toy of the present invention is of a construction which is both durable and long lasting, and it should also require little or no maintenance to be provided by the user throughout its operating lifetime. The pivotally manipulable toy of the present invention is also be of relatively inexpensive construction to enhance its market appeal and to thereby afford it the broadest possible market. Finally, the pivotally manipulable toy of the present invention achieves all of the aforesaid advantages and objectives without incurring any substantial relative disadvantage.
For purposes of this disclosure, the term “coupled” means the joining of two components directly or indirectly to one another. Such joining may be moveable in nature or stationary in nature. Such joining may be achieved with the two components and any additional intermediate members being integrally attached to one another or the two components and any additional member being formed as a single unitary body with one another. Such joining may be permanent in nature or alternatively be removable or releasable in nature.
Although the foregoing description of the pivotally manipulable toy and method of the present invention has been shown and described with reference to particular embodiments and applications thereof, it has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the particular embodiments and applications disclosed. It will be apparent to those having ordinary skill in the art that a number of changes, modifications, variations, or alterations to the invention as described herein may be made, none of which depart from the spirit or scope of the pivotally manipulable toy and method of the present invention. The particular embodiments and applications were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such changes, modifications, variations, and alterations should therefore be seen as being within the scope of the pivotally manipulable toy and method of the present invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
This application claims priority of U.S. Provisional Patent Application No. 61/153,152, which is entitled “Pivotally Manipulable Toy,” and which was filed on Feb. 17, 2009, the entirety of which application is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
207346 | Clow | Aug 1878 | A |
1452340 | Hubbar | Apr 1923 | A |
1541004 | Taylor | Jun 1925 | A |
1854999 | Ralls | Apr 1932 | A |
1860627 | Sherman | May 1932 | A |
2496810 | Nerrie | Feb 1950 | A |
D169878 | Washington | Jun 1953 | S |
3315376 | Nielsen | Apr 1967 | A |
3381394 | Munro | May 1968 | A |
3837096 | Sterling | Sep 1974 | A |
3977683 | Tomura | Aug 1976 | A |
4114307 | Liebeskind | Sep 1978 | A |
4382794 | Preus | May 1983 | A |
4605383 | Horiuchi | Aug 1986 | A |
4791740 | Ferrari | Dec 1988 | A |
5304086 | Bolli et al. | Apr 1994 | A |
5951299 | Kim | Sep 1999 | A |
6135851 | Drake et al. | Oct 2000 | A |
20030162153 | Mohn et al. | Aug 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20100210176 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
61153152 | Feb 2009 | US |